0

Kolmion kulma

Otetaanpa välillä yksi mielenkiintoinen perusgeometrian ongelma.colingeo

Oheisessa kuvassa piste P on ympyrän keskipiste ja pisteet A, B ja C ovat ympyrän kehän pisteitä. Piste D on suorien AP ja CB leikkauspiste ja janat PC ja CD ovat yhtä pitkät. Kulman \angle APB suuruus on 69^{\circ}. Kuinka suuri on kulma \alpha?


Ratkaisu: Kolmio PDC on tasakylkinen, joten myös kulma \angle CPD=\alpha. Koska kolmion yhden kulman vieruskulma on kolmion kahden muun kulman summa, saadaan \angle PCB=2\alpha. Koska myös PB on ympyrän säde, on kolmio PCB tasakylkinen, eli \angle PBC=2\alpha. Tästä edelleen vieruskulmalausetta soveltaen huomataan, että 2\alpha+2\alpha = \alpha + 69^{\circ}. Siis \alpha=23^{\circ}.

0

Suorakaide neljännesympyrällä

Näyttökuva 2016-4-20 kello 7.18.48Neliön sisään piirretään neljännesympyrä niin, että neliön ylänurkasta voidaan erottaa kuvan mukainen neljännesympyrää koskettava suorakulmio, jonka sivut ovat 1 ja 8. Kuinka pitkä on neliön sivu?

Tämä pulma tuli vastaan jokin aika sitten Twitterissä. Tässä muodossa pulma on Matthew Scroggsilta.


Ratkaisu: Olkoon neliön sivu (ja samalla neljännesympyrän säde) r. Piirretään neljännesympyrän kehältä kohtisuora jana neliön sivulle. Nyt saadaan suorakulmainen kolmio, jonka sivujen pituudet ovat r-8, r-1 ja r. Tästä Pythagoraan mukaan saadaan (r-8)^2+(r-1)^2=r^2. Yhtälön ratkaisut ovat r=13 ja r=5, mutta jälkimmäinen ei tietenkään kelpaa, sillä selvästi r>8.Näyttökuva 2016-4-25 kello 11.06.01

0

Tangenttikolmio

Näyttökuva 2015-12-11 kello 15.46.15Ympyrälle piirretään tangentit kehän ulkopuolisesta pisteestä C. Tangenttien sivuamispisteet D ja E ovat etäisyydellä 10 pisteestä C. Piirretään ympyrälle vielä yksi tangentti pisteiden C ja D välisellä kaarella olevan pisteen F kautta. Olkoon tämän tangentin ja aiempien tangenttien leikkauspisteet A ja B. Laske kolmion ABC piiri.

Martin Gardner ainakin on tätä ongelmaa esitellyt.


Ratkaisu: Aivan vastaavasti kuin piste C on tangenttikulman kärki, myös pisteet A ja B ovat. Voidaan helposti osoittaa, että tangenttikulman kärki on aina yhtä etäällä molemmista tangenttipisteistä, eli samaan tapaan kuin |DC|=|EC|, voidaan myös todeta, että |AD|=|AF| ja |BE|=|BF|. Siis kolmion ABC piiri on 20.

0

Ympyrä säännöllisen monikulmion ympärillä

Säännöllisellä monikulmiolla tarkoitetaan monikulmiota, jonka kaikki sivut ovat yhtä pitkät ja kaikki kulmat yhtä suuret. Niitä on tutkittu käytännössä niin kauan kuin matematiikkaa yleensäkin on tutkittu.

Yksi hyvin tunnettu säännöllisten monikulmoiden sovelluskohde on ympyrän piirin ja pinta-alan arviointi. Jo ammoin ymmärrettiin, että kaikkien ympyröiden piirin ja halkaisijan suhde oli sama: piiri on hieman yli kolminkertainen halkaisijaan nähden. Nykyään tätä suhdetta merkitään symbolilla \pi. Luku \pi on irrationaaliluku, eli päättymätön jaksoton desimaaliluku. Sitä on vuosituhansien saatossa arvioitu monin tavoin, josta tässä paneudumme nyt ympyrän sisään piirrettyihin säännöllisiin monikulmioihin.

Ympyrän sisään piirretyllä monikulmiolla tarkoitetaan monikulmiota, jonka kaikki kärjet ovat ympyrän kehällä. Säännöllisen monikulmion ympäri voidaan aina piirtää ympyrä, vaikka yleisesti kaikilla monikulmioilla tätä ominaisuutta ei ole. Säännöllisen monikulmion keskipiste ja sen ympäri piirretyn ympyrän keskipiste yhtyvät.

Jos säännöllisen monikulmion sivujen lukumäärää kasvatetaan, saadaan yhä parempia arviota ympyrän pinta-alalle ja sitä kautta myös luvulle \pi. Voidaan (melko) helposti osoittaa, että kun monikulmion sivujen lukumäärä kasvaa rajatta, monikulmion alan raja-arvo on ympyrän ala \pi r^2. Kuvia katsomalla tämä toki näyttää ilmeiseltä, mutta matematiikassa mikään ei ole varmaa ennen kuin se on oikeasti todistettu.

Viikon vaikea kysymys on seuraava. Kuinka monisivuinen ympyrän sisään piirretty säännöllinen monikulmio tarvitaan, jotta monikulmion ala olisi korkeintaan 0,1 prosenttia pienempi kuin ympyrän ala?

PS. Arkhimedes pääsi jo 200-luvulla eaa. huiman hyvään arvioon 3\frac{10}{71}<\pi<3\frac{1}{7}. Hän käytti tiettävästi apunaan ympyrän ympäri ja sisään piirrettyä säännöllistä 96-kulmiota!


Ratkaisu: Säännöllinen n-kulmio voidaan aina jakaa n yhtenevään tasakylkiseen kolmioon, joiden kanta on monikulmion sivu ja kylkinä monikulmion keskipisteen ja kärjen yhdysjana. Tässä tapauksessa tämä yhdysjana on tietenkin ympyrän säde. Kolmioiden huippukulma on \frac{360^{\circ}}{n}, joten kolmioiden yhteenlasketuksi pinta-alaksi saadaan

    \[A_{kolmiot}=n\cdot\frac{1}{2}r^2\cdot \sin \frac{360^{\circ}}{n}.\]

Tehdään tässä vaiheessa muutama muutos käytettäviin lukuihin. Ensinnäkin, muutetaan kulman suuruus radiaaneiksi. 360^{\circ}=2\pi (rad), joten alan lausekkeeksi saadaan nyt A_{kolmiot}=n\cdot\frac{1}{2}r^2\cdot \sin \frac{2\pi}{n}. Tehdään vielä toinen tekninen vaihdos vähäksi aikaa: olkoon \frac{2\pi}{n}=x, joten \frac{2\pi}{x}=n, josta edelleen

    \[A_{kolmiot}=\frac{2\pi}{x}\cdot\frac{1}{2}r^2\cdot \sin x=\pi r^2\cdot \frac{\sin x}{x}.\]

Ympyrän ala on tietenkin \pi r^2, joten kysytty suhde

    \[\frac{A_{kolmiot}}{A_{ympyrä}}=\frac{\pi r^2\cdot \frac{\sin x}{x}}{\pi r^2}=\frac{\sin x}{x}.\]

Tutkitaan seuraavaksi lausekkeen \frac{\sin x}{x} käyttäytymistä. Koska \frac{2\pi}{n}=x, niin sivujen lukumäärän n kasvaessa rajatta x\to 0. On tilanneyhteydestä ilmeistä, että nyt \frac{\sin x}{x}\to 1, kun x\to 0 mutta kuinka se todistetaan? Ja edelleen (ja tässä onkin varsinainen kysymyksemme): kuinka suuri luvun n on oltava, tai siis kuinka pieni luvun x on oltava, jotta \frac{\sin x}{x}>0,999. Vastaus molempiin kysymyksiin voidaan etsiä monin tavoin. Niistä yksi hienoimmista on ns. Taylorin sarja.

Sinifunktio voidaan esittää päättymättömänä summana eli sarjana

    \[\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots,\]

joten lauseke \frac{\sin x}{x} voidaan sieventää muotoon

    \[\frac{\sin x}{x}=\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots}{x}=1-\frac{x^2}{3!}+\frac{x^4}{5!}-\frac{x^6}{7!}+\cdots\]

Tämän lausekkeen arvo lähestyy selvästi arvoa 1, kun x\to 0. Edelleen tätä lauseketta voidaan arvioida vain paria ensimmäistä termiä käyttäen. Siis lähellä nollaa

    \[\frac{\sin x}{x}\approx 1-\frac{x^2}{3!}.\]

Näin ollen oikea suuruusluokka ratkaisulle saadaan epäyhtälöstä 1-\frac{x^2}{3!}>0,999, josta 0<x<\sqrt{0,006}. (Ei-positiivinen osa epäyhtälön ratkaisusta voidaan nyt sivuuttaa.) Takaisin alkuperäiseen muuttujaan n palaten saamme

    \[\frac{2\pi}{n}<\sqrt{0,006},\]

josta edelleen n>81,11\ldots. Koska tämä oli alkujaankin likiarvo, tarkistetaan vielä saadut arvot sijoittamalla lausekkeeseen \frac{\sin x}{x} luvun n arvoja 81 ja 82 vastaavat arvot x=\frac{2\pi}{81} ja x=\frac{2\pi}{82}:

    \[\frac{\sin \frac{2\pi}{81}}{\frac{2\pi}{81}}\approx 0,99897<0,999; \quad \quad \frac{\sin \frac{2\pi}{82}}{\frac{2\pi}{82}}\approx 0,99902>0,999.\]

Näin ollen vastaus kysymykseen on siis vähintään säännöllinen 82-kulmio.

Ratkaisuun liittyvää Geogebra-applettia voi tutkia tämän linkin kautta.

 

0

Venäläisen kolmion piiri

Ystäväni Tuomas Salo törmäsi Moskovan-vierailullaan viime vuosituhannen lopulla seuraavaan oivallisen kauniiseen pulmaan.

Valitaan mielivaltaisesti piste A positiiviselta x-akselilta väliltä ]0,1[ ja piste B positiiviselta y-akselilta väliltä ]0,1[. Valitaan piste C mistä tahansa origokeskisen yksikköympyrän kehältä koordinaatiston ensimmäisestä neljänneksestä. Osoita, että kolmion ABC piiri on enemmän kuin 2.

Ellet muuten usko, voit liikutella pisteitä oheisessa Geogebra-appletissa. Jos appletti ei näy tässä, voit leikkiä sillä Geogebratubessakin.


 

Ratkaisu: Tämän ongelman voinee ratkaista algebrallakin – Pythagoraan lausetta ja muutamia luotaantyöntäviä yhtälöitä ja niin edelleen. Seuraava ratkaisu on kuitenkin kauneudessaan ilmiömäinen ja, mikä tärkeintä, täysin riittävä.venalainenongelma

Peilataan piste C x– ja y-akseleiden suhteen pisteiksi C' ja C''.Nyt symmetrian nojalla janat AC ja AC' ovat keskenään yhtä pitkät, samoin janat BC ja BC''. Näin ollen kolmion ABC piiri on sama kuin murtoviivan C'ABC'' pituus. Koska C'C'' on ympyrän halkaisija, ja siis pituudeltaan 2, on kysytty piiri selvästi tätä pidempi.

0

Lävistäjä

neljännesympyrä

Neljännesympyrän sisällä on kuvan mukainen suorakulmio. Laske lävistäjän BD pituuden tarkka arvo.

Tämä mainio pikku ongelma on napattu jälleen Martin Gardnerilta. Ratkaisitko alle minuutissa?

Ratkaisu ongelmaan on tässä.