0

Pormestarinvaali

Tuomo ja Mikko ovat pormestarinvaalin toisella kierroksella. Mikko saa lopulta m ääntä ja Tuomo t ääntä. Oletetaan, että annetut äänet nostetaan vaaliuurnasta yksi kerrallaan ja pidetään jatkuvasti kirjaa laskennan edistymisestä. Millä todennäköisyydellä ensimmäisen nostetun äänen jälkeen äänet ovat jossain ääntenlaskennan vaiheessa tasan?

 

0

Pillinvääntöä

Taitetaan mehupilli kahdesta sattumanvaraisesta kohdasta. Millä todennäköisyydellä taitoksista saadaan kolmio?

Kuva: Petter Duvander/Flickr (CC BY-NC 2.0)


Ratkaisu: Kolmioepäyhtälön mukaan kolmio syntyy, mikäli yksikään paloista ei ole pidempi kuin kahden muun summa. Jos sovitaan, että pillin pituus on 1, tämä tarkoittaa sitä, että kunkin kolmesta osasta pitää olla lyhyempi kuin \frac{1}{2}.

Sovitaan, että taitoskohdat ovat x ja y, missä 0<x<1 ja 0<y<1. Kolmio muodostuu jommalla kummalla seuraavista ehdoista:

  1. x<y; x<\frac{1}{2}; y-x<\frac{1}{2}; 1-y<\frac{1}{2} tai
  2. y<x; y<\frac{1}{2}; x-y<\frac{1}{2}; 1-x<\frac{1}{2}.

Oheisessa kuvassa on ensimmäisen ehdon ratkaisualue on sinertävänä ja jälkimmäisen ehdon ratkaisualue vaaleanpunaisena. Kumpikin näistä on kooltaan \frac{1}{8} koko neliöstä, joten kolmio muodostuu todennäköisyydellä \frac{1}{4}.

Tämän pulman lähde on Matthew Scroggsin pulmasivu.

0

Paikat sekaisin

Teatterisalissa on 100 numeroitua paikkaa. Loppuunmyytyyn esitykseen ensimmäisenä saapuva H. hukkaa paikkalippunsa heti saliin päästyään, joten hän istuu sattumanvaraiselle paikalle. Tämän jälkeen kaikki muut istuvat omille paikoilleen, tai mikäli paikalla istuu jo joku, hekin asettuvat sattumanvaraiselle istuimelle. Millä todennäköisyydellä viimeisenä saliin saapuva Toni pääsee omalle paikalleen?

Kuva: Thomas Hawk/Flickr (CC BY-NC 2.0)


Ratkaisu: Niin uskomattomalta kuin se kuulostaakin, Toni saa oman paikkansa 50 prosentin todennäköisyydellä. Lähdetään yksinkertaisesta tilanteesta: jos salissa olisi vain kaksi paikkaa, H. istuisi omalleen ja Tonin paikalle yhtä todennäköisesti. Mutta kun paikkojen määrää lisätään, ei edelleenkään ole väliä kuin näillä kahdella paikalla!

Jos H. istuu omalle paikalleen tai Tonin paikalle, istuvat kaikki muut oikeille paikoille. Jos taas H. istuu esimerkiksi Kössin paikalle, istuvat kaikki ennen Kössiä istuutuvat omille paikoilleen, ja vasta Kössin on päätettävä, minne istuu. Jos Kössi istuu H:n paikalle, saa Toni oman paikkansa, ja jos taas Kössi istuu Tonin paikalle, Toni ei saa sitä. Näissä molemmissa tapauksissa kaikki loput saavat olan paikkansa. Jos Kössi istuu muualle, esimerkiksi Emilian paikalle, on Emilian hänen jälkeensä tehtävä aivan vastaava ratkaisu. Eli lopullisia päätöksiä on ainoastaan kaksi: istuako H:n paikalle vai Tonin paikalle, muut päätökset matkan varrella vain pitkittävän tämän päätöksen hetkeä.

0

Kolikkopeli

Kuva: Mark Seton/Flickr (CC BY-NC 2.0)

Tuomas ja Heikki pelaavat seuraavilla säännöillä kolikonheittopeliä. He heittävät (reilua, painottamatonta) kolikkoa, kunnes kolmella peräkkäisellä heitolla tulee joko heittosarja klaava-klaava-kruuna tai klaava-kruuna-kruuna. Tuomas voittaa ensimmäisessä ja Heikki jälkimmäisessä tapauksessa.

Millä todennäköisyydellä Tuomas voittaa pelin?


Kuva 1: Klaavaputki toimii Tuomaksen eduksi.

Ratkaisu: Tilannetta voidaan mallintaa monilla tavoilla. Tämäntyyppisissä ongelmissa tykkään itse yleensä lähteä piirtelemään tilannetta auki esimerkiksi puukaavion avulla. Merkitään kruunan heittämistä R:llä ja klaavan heittämistä L:llä. Koska kumpikin voittosarja alkaa klaavalla, voidaan olettaa, että ensimmäinen (relevantti) heitto on ollut klaava.

Jos toinenkin heitto on klaava, ollaan menossa kohti Tuomaksen voittoa (kuva 1). Nyt kruuna katkaisee pelin Tuomaksen eduksi, klaava jatkaa peliä, mutta pitää edelleen Tuomaksella ratkaisevan edun.

Kuva 2: Lisää Tuomaksen voittolinjoja.

Tuomaksen peli ei ole pelattu, vaikka seuraava heitto olisikin kruuna: yksi klaava lisää, ja tilanne palautuu olennaisesti samaksi kuin edellä (kuva 2).

Entäpä Heikin voittolinja tai voittolinjat? Mistä ne löytyvät? Heikki tarvitsee kaksi peräkkäistä kruunaa klaavan jälkeen. Jos saadan klaava, on Heikki aina kahden peräkkäisen onnistuneen heiton päässä voitosta. Tämä on ratkaiseva ero Tuomaksen hyväksi, sillä Tuomaksella voitto voi olla jo yhden heiton päässä. Kaikki sarjat, jossa kaksi klaavaa esiintyy peräkkäin johtavat lopulta Tuomaksen voittoon. Heikin voitto voi siis tulla vain seuraavilla heittosarjoilla: LRR, LRLRR, LRLRLRR, LRLRLRLRR jne. (kuva 3)

Kuva 3: Heikin voittolinjat.

Lasketaan nyt tarkalleen Heikin voittotodennäköisyys, josta Tuomaksen voittotodennäköisyys saadaan komplementtisääntöä käyttäen. Koska kolikko oli painottamaton, sekä kruunan että klaavan todennäköisyys on \frac{1}{2}. Koska peräkkäiset heittokerrat ovat toisistaan riippumattomat, voidaan Heikin voittosarjat laskea kertolaskusääntöä soveltaen. Koska tarkastelu voitiin siis aloittaa ensimmäisestä klaavasta, on heittosarjan LRR todennäköisyys sama kuin kahden peräkkäisen kruunan, eli \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}. Vastaavasti heittosarja LRLRR saadaan todennäköisyydellä \left(\frac{1}{2}\right)^4 ja niin edelleen. Koska kaikki nämä heittosarjat ovat toisistaan riippumattomia, voidaan niiden yhteinen todennäköisyys laskea summana

    \[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^6+\left(\frac{1}{2}\right)^8+\cdots .\]

Tämä puolestaan on geometrinen sarja, jonka suhdeluku on \left(\frac{1}{2}\right)^2=\frac{1}{4}. Näin ollen Heikin voiton todennäköisyydeksi saadaan

    \[\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.\]

Komplementtisäännön nojalla Tuomas voittaa nyt todennäköisyydellä 1-\frac{1}{3}=\frac{2}{3}.

Tämä pulma löytyi Colin Beveridgen loistavalta Flying colors maths -sivustolta, jolla hän esittelee pulmaan ratkaisun parista muusta näkökulmasta. Colin on myös mainion huumorintajuinen heppu, jonka tekstejä on aina ilo lukea. Säännöllisehkön Twitter-yhteydenpitomme pohjalta Colin on lisännyt joihinkiin teksteihinsä Big in Finland -tunnisteen. Aika velikultia.

0

Todennäköisyyksiä turnauskaaviosta

Pulmakulmassa järjestettiin pulmanratkontaturnajaiset. Lähes kaikki Pulmakulman tunnetut lukijat1 asetettiin turnauskaavioon, josta vain voitolla pääsee etenemään seuraavalle kierrokselle (katso esimerkki ohessa). Turnauskaavion todennäköisyysmatematiikasta saa aikaiseksi muutamia sangen mukavia pulmia. Seuraavat on poimittu Frederick Mostellerin kirjasta Fifty Challenging Problems in Probability.

Ensimmäisen kierroksen pulma on, millä todennäköisyydellä toiseksi paras ratkoja tulee kahdeksan pelaajan turnauksessa toiseksi, kun kaavion ensimmäinen kierros arvotaan.

Toisella kierroksella kysymme, millä todennäköisyydellä kaksi tiettyä pelaajaa (esim. Petri ja Toni) kohtaavat toisensa kahdeksan hengen pelaajan turnauksessa. Finaalikysymyksenä on, millä todennäköisyydellä kaksi tiettyä pelaajaa kohtaavat toisensa 2^n pelaajan turnauksessa.

Esimerkki turnauskaaviosta (Tehty osoitteessa http://www.freebracketgenerator.com)


Ratkaisu: Ensimmäinen kysymyksistämme on helppo: jos oletetaan, että ratkojilla on pysyvä paremmuusjärjestys (eli parempi voittaa aina heikomman), tulee toiseksi paras toiseksi vain, jos ei kohtaa parasta ennen kolmatta kierrosta eli finaalia. Näin ollen toiseksi parhaan pitää olla eri puolella kaaviota. Tämän todennäköisyys on \frac{4}{7}.

Toisessa ja kolmannessa kysymyksessä ei enää ole paremmuusjärjestyksellä väliä, nyt oletamme, että kummallakin otteluparin osapuolella on yhtäläiset mahdollisuudet jatkaa seuraavalle kierrokselle.

Olkoon Petri sijoitettu sattumanvaraiseen paikkaan kahdeksanpaikkaisessa kaaviossa. Nyt todennäköisyys, että Toni tulee ensimmäisessä ottelussa häntä vastaan, on \frac{1}{7}. Todennäköisyys sille, että Toni on viereisessä parissa (jolloin he kohtaisivat toisella kierroksella), on \frac{2}{7}, ja todennäköisyys sille, että molemmat pääsevät toiselle kierrokselle on \left(\frac{1}{2}\right)^2=\frac{1}{4}. Edelleen todennäköisyys sille, että Toni ja Petri ovat kaavion eri puolilla (jolloin he kohtaavat aikaisintaan finaalissa), on \frac{4}{7}, ja todennäköisyys, että molemmat etenevät finaaliin saakka, on \left(\frac{1}{4}\right)^2=\frac{1}{16}. Kaikkiaan Petrin ja Tonin kohtaamisen todennäköisyys on nyt

    \[\frac{1}{7}\cdot 1+\frac{2}{7}\cdot\frac{1}{4}+\frac{4}{7}\cdot\frac{1}{16}=\frac{1}{4}.\]

Ratkaistaan sitten vielä viimeinen kysymys. Jos turnauksessa on kaksi osallistujaa, kohtaavat Petri ja Toni varmasti. 2^2=4 osallistujan tapauksessa he kohtaavat todennäköisyydellä \frac{1}{2}, ja äsken näytimme, että kohtaamistodennäköisyys 2^3=8 osallistujan turnauksessa on \frac{1}{4}. Voimme tehdä arvauksen, että 2^n osallistujan turnauksessa kohtaamistodennäköisyys olisi \frac{1}{2^{n-1}}. Tämä voidaan osoittaa matemaattisella induktiolla.

Selvästi väittämämme pätee, kun n=1, eli 2^1=2 osallistujan turnauksessa Toni ja Petri kohtaavat todennäköisyydellä \frac{1}{2^{1-1}}=1. Käytetään nyt induktio-oletuksena, että 2^k osallistujan turnauksessa kohtaamistodennäköisyys olisi \frac{1}{2^{k-1}}. On osoitettava vielä, että 2^{k+1} osallistujan turnauksessa kohtaamistodennäköisyys olisi \frac{1}{2^{(k+1)-1}}=\frac{1}{2^k}.

Aloitetaan toteamalla, että jos osallistujia on 2^{k+1}, ovat Petri ja Toni eri puolilla kaaviota (eli kohtaavat aikaisintaan finaalissa) todennäköisyydellä \frac{2^k}{2^{k+1}-1}. Tämä on johdettavissa helposti kahdeksan pelaajan turnauksen mallinnuksen mukaisesti. Finaaliin päästäkseen Tonin ja Petrin on kummankin voitettava k vastustajaa, minkä todennäköisyys on \frac{1}{2^k}\cdot\frac{1}{2^k}=\frac{1}{2^{2k}}. Näin ollen todennäköisyys sille, että he ovat kaavion eri puolilla ja kohtaavat (finaalissa) on

    \[\frac{2^k}{2^{k+1}-1}\cdot\frac{1}{2^{2k}}.\]

Todennäköisyys sille, että Toni ja Petri ovat samalla puolella kaaviota, eli kohtaamassa ennen finaalia on \frac{2^k-1}{2^{k+1}-1}. Induktio-oletuksen mukaan heidän todennäköisyytensä kohdata tässä 2^k osallistujan (ali-)turnauksessa on \frac{1}{2^{k-1}}. Näin ollen yhteenlasketuksi kohtaamistodennäköisyydeksi 2^{k+1} osallistujan turnauksessa saadaan

    \[\frac{2^k-1}{2^{k+1}-1}\cdot\frac{1}{2^{k-1}}+\frac{2^k}{2^{k+1}-1}\cdot\frac{1}{2^{2k}},\]

joka toden totta sievenee muotoon

\frac{1}{2^k}.

Näin ollen induktioväite on osoitettu todeksi ja samoin koko väittämä.

0

Ruuhkavuodet

Olen ilokseni kuullut, että Pulmakulmalla on ystäviä myös etelässä. Tämä seuraava pulma on saatu fanifiktiona, ja koska se perustunee tositapahtumiin, suojeltakoon lähdettä ainakin vähän.

No niin. Stefanilla on kolme lasta. Lasten kanssa kävellään päiväkodin ja koulun väliä viitenä päivänä viikossa. Lapsi A kiukuttelee keskimäärin 1/5 matkoista, lapsi B 3/5 matkoista ja lapsi C 4/5 matkoista. Mikä on todennäköisyys, että viikossa olisi edes yksi päivä, jolloin kukaan lapsista ei kiukuttele?


Ratkaisu: Ratkaistaan ongelma käyttämällä yleistä kertolaskusääntöä, komplementtisääntöä sekä binomitodennäköisyyttä. Tilannehan voidaan tulkita toistokokeeksi, jossa toistetaan yhden päivän käyttäytymistä viisi kertaa.

Oletetaan, että lasten kiukuttelualttiudet ovat toisistaan riippumattomia. Näin ollen yhteen suuntaan todennäköisyys sille, että kukaan ei kiukuttele on

    \[\frac{4}{5}\cdot\frac{2}{5}\cdot\frac{1}{5}=\frac{8}{125}.\]

Päivässä kuljetaan kaksi matkaa, joten todennäköisyys sille, että kukaan ei kiukuttele yksittäisenä päivänä on

    \[\left(\frac{8}{125}\right)^2=0,00496.\]

Siis todennäköisyys sille, että ainakin joku kiukuttelee yksittäisenä päivänä on 1-0,004096=0,995904.

No, ei tilanne ole kuitenkaan ihan näin synkkä, sillä viikossa päiviä on viisi. Voidaan ajatella päivien toistuvan aina samanlaisina (eli toistot ovat toisistaan riippumattomia), jolloin binomitodennäköisyyttä hyödyntäen voidaan laskea todennäköisyys sille, että ainakin yhtenä päivänä kukaan ei kiukuttele. Siis P(\mbox{ainakin kerta ilman kiukkua})=1-P(\mbox{joku kiukuttelee aina}), eli

    \[1-0,995904^5=0,02031\ldots\approx2,0\%.\]

0

Monivalintakysymys

Jos vastaat tähän kysymykseen sattumanvaraisesti, millä todennäköisyydellä vastaat oikein?

  1. 25 %
  2. 50 %
  3. 60 %
  4. 25 %

Tämä kysymys on kierrellyt jo jonkin aikaa ympäri nettiä. Kiitos kontribuutiosta, Mikko Saari!


Ratkaisu: Pulmaa ei tietenkään voida ratkaista sen itseensä viittaavan luonteen vuoksi. Toisin sanoen pulma ei ole hyvin määritelty. Se ei tietenkään tarkoita sitä, etteikö se olisi hauska. Juuri tällaisista paradokseista ja kielivitseistä minä olen pitänyt koko ikäni. Lisää tästä teemasta löytyy esimerkiksi Alexander Bogomolnyn mainiolta Cut the Knot -sivustolta.

0

Sinisilmäiset tytöt

Kun vastaasi tulee kaksi Sinisalon sisarusta, on todennäköisyys sille, että molemmilla on siniset silmät, täsmälleen 50 prosenttia. Montako sisarusta Sinisalon perheessä todennäköisimmin on?

Kyllä vain, Martin Gardnerin klassisia pulmiahan tämä ilmiselvästi on.


Ratkaisu: Jos Sinisalon perheessä on t tyttöä, joista sinisilmäisiä on s kappaletta, on todennäköisyys kahdelle sattumanvaraiselle sinisilmälle \displaystyle\frac{s(s-1)}{t(t-1)}. Tyttöjä on todennäköisimmin 4, joista sinisilmäisiä on 3, sillä seuraavat yhtälön \displaystyle\frac{s(s-1)}{t(t-1)}=\frac{1}{2} toteuttavat kokonaisluvut ovat t=21 ja s=15.

0

Katkaistu keppi

Keppi katkaistaan sattumanvaraisesta kohdasta. Viikon helppo pulma on, kuinka suuri osa koko kepistä lyhyempi pala keskimäärin on. Tämän ratkaistuasi voit siirtyä viikon vaikeaan pulmaan: mikä on kepin lyhyemmän ja pidemmän osan pituuksien keskimääräinen suhde?


Ratkaisu: Sattumanvarainen katkaiseminen tarkoittaa sitä, että kepin jokainen kohta on yhtä todennäköinen katkeamiskohta. Katkeamiskohta on yhtä todennäköisesti kepin puolivälin vasemmalla ja oikealla puolella. Se katkeaa keskimäärin tämän puolikkaan keskeltä, joten sen keskimääräinen pituus on \frac{1}{4} koko kepin pituudesta.

Tutkitaan sitten osien pituuksien suhdetta. Yleisyydestä poikkeamatta voidaan olettaa kepin pituudeksi 1 yksikkö. Olkoon  katkeamiskohta kepin loppupäässä ja olkoon pidemmän palan pituus x. Lyhyempi pala on nyt siis 1-x ja näin ollen kysytyksi suhteeksi saadaan

    \[2\int_{\frac{1}{2}}^1\frac{1-x}{x} dx=2\ln 2-1\approx 0,386.\]

Tämä pulma oli Frederick Mostellerin kirjasta Fifty Challenging Problems in Probability.

0

Kaksi tuomioistuinta

Kuvitellaan kaksi tuomioistuinta. Ensimmäisessä tuomioistuimessa istuu kolme tuomaria, joista kaksi osaa toisistaan riippumatta tehdä oikeudenmukaisen ratkaisun päätöksissään todennäköisyydellä p. Kolmas tuomari heittää päätöksensä aina kolikolla. Ratkaisu saadaan enemmistöpäätöksellä. Toinen tuomioistuin koostuu vain yhdestä tuomarista, joka osaa tehdä oikean päätöksen todennäköisyydellä p. Kumpi tuomioistuin antaa todennäköisemmin oikean tuomion?

Kuva: Brisan / Flickr (CC BY-NC-ND 2.0)

Kuva: Brisan / Flickr (CC BY-NC-ND 2.0)


Ratkaisu: Molemmat tuomioistuimet ovat yhtä hyviä. Ensimmäisessä tuomioistuimessa on kolme mahdollista tapausta, joissa ratkaisu on oikeudenmukainen:

  1. Ensimmäinen ja toinen tuomari osuvat oikeaan. Tällöin lantinheittäjätuomarin ratkaisulla ei ole väliä. Todennäköisyys tälle on riippumattomuuden nojalla p\cdot p=p^2.
  2. Ensimmäinen on oikeassa, toinen väärässä ja lantinheittäjä oikeassa. Todennäköisyys tälle on p(1-p)\cdot\frac{1}{2}=\frac{p}{2}-\frac{p^2}{2}.
  3. Ensimmäinen erehtyy, toinen on oikeassa ja lantinheittäjä on oikeassa. Tämänkin todennäköisyys on \frac{p}{2}-\frac{p^2}{2}.

Koska tapaukset ovat erillisiä, on tuomioistuimen onnistumistodennäköisyys näiden kolmen tapauksen todennäköisyyksien summa, eli

    \[p^2+\left(\frac{p}{2}-\frac{p^2}{2}\right)+\left(\frac{p}{2}-\frac{p^2}{2}\right)=p.\]

Tämä pulma on Frederick Mostellerin kirjasta Fifty Challenging Problems in Probability with Solutions (Dover Publications, 1965).