5

Pyörivä pöytä ja helisevä tiuku

Pöydän pyörittely on matemaattisessa mielessä sangen kiehtovaa, oli sitten kyseessä epätasainen keittiön lattia tai väärässä järjestyksessä istuvat ritarit. Myös tässä ongelmassa tarvitsee pyöritellä pöytää.

Neliön muotoisen pöydän jokaisessa nurkassa on kolo, johon on asetettu juomalasi joko ylösalaisin tai oikein päin. Omituisella mekaniikalla laseihin on kytketty pieni tiuku, joka helähtää, mikäli kaikki lasit ovat samoin päin. Koloihin ei näe, mutta niihin pystyy työntämään käden niin, että tunnustelemalla selviää, kuinka päin lasi on. Lisäksi lasin pystyy kääntämään. Pöytää voidaan pyörittää keskipisteensä ympäri niin, että kun pyöriminen loppuu, ei mitenkään voida paljaalla silmällä päätellä, mikä koloista on mikäkin. Omituinen häkkyrä siis.

Pelataan seuraavanlaisin säännöin: pyöräytetään pöytää, jonka jälkeen työnnetään kädet yhtä aikaa mihin tahansa kahteen eri koloon. Koloissa voi tunnustella laseja ja sen jälkeen kääntää joko molemmat lasit tai vain toisen. Kumpaakaan lasia ei ole pakko kääntää. Tarkasteltavat kolot on kuitenkin valittava samanaikaisesti ja ennen kuin menee räpeltämään mitään. Tavoite on saada tiuku helisemään. Alkutilanne on muuten sattumanvarainen, mutta voidaan olettaa, että kaikki lasit eivät ole samoin päin (sillä silloinhan tiuku helisisi jo).

Mikä on pienin määrä pyöräytyksiä, jonka jälkeen tiu’un saa varmasti helisemään? Miten se tehdään?

Myös tämä pulma on Martin Gardnerilta. Poimin sen mainiosta teoksesta The Colossal Book of Short Puzzles and Problems (W.W. Norton & Co, 2006). Pulman esitettyään Gardner jatkaa, että jos pöydässä olisi vain kaksi koloa, olisi ratkaisu tietenkin triviaali: kädet koloihin ja lasit samoin päin. Myöskään kolmikoloinen pöytä ei ole kovin vaikea ratkaistava. Jos ensimmäisellä yrityksellä molemmat lasit ovat samoin päin, käännetään ne toisin päin ja johan helisee. Jos taas ne ovat eri päin, käännetään ne molemmat esimerkiksi alassuin, jonka jälkeen toisella yrityksellä helinä on varma. Edelleen Gardner toteaa, että voidaan osoittaa, ettei viisikoloista pöytää pysty ratkaisemaan – ainakaan alle kolmekätisenä pyörittäjänä.


Ratkaisu: Viisi pyöräytystä riittää aina. Toimitaan näin:

  1. Otetaan vastakkaisissa koloissa olevat lasit ja käännetään ne molemmat ylöspäin. Jos tiuku ei nyt helise, jatketaan pyörittämistä.
  2. Otetaan vierekkäiset lasit ja käännetään ne ylöspäin, elleivät ne jo ole. Jos tiuku ei vieläkään helise, nyt tiedetään, että kolme laseista on ylöspäin ja yksi alaspäin. Pyöritetään pöytää uudestaan.
  3. Valitaan jälleen vastakkaiset kolot. Jos toinen laseista on alaspäin, käännetään se ja tiuku helisee. Jos taas molemmat ovat ylöspäin, käännetään toinen, jolloin välttämättä kaksi vierekkäistä lasia on ylöspäin ja kaksi vierekkäistä alaspäin. Pyöritetään edelleen.
  4. Valitaan kaksi vierekkäistä koloa. Jos lasit ovat samoin päin, käännetään molemmat ja tiuku helisee. Jos ne taas ovat eri päin, käännetään jälleen molemmat, jolloin varmasti kaksi vastakkaista lasia on ylöspäin ja toiset kaksi vastakkaista alaspäin. Pyöritetään.
  5. Valitaan vastakkaiset lasit ja käännetään ne molemmat toisin päin. Tiuku helisee.
2

Kielletty katse

Anneli katselee Börjeä, mutta Börje katselee Christinaa. Anneli on naimaton, mutta Christina on – varjelkoon! –  naimisissa. Onko skandaali valmis? Katseleeko naimaton naimisissa olevaa?

Kuva: Gordon Ross / Flickr (CC BY-NC-ND 2.0)

Kuva: Gordon Ross / Flickr (CC BY-NC-ND 2.0)


Ratkaisu: Börjen parisuhdestatusta emme tunne, mutta skandaali tästä toden totta seuraa, sillä riippumatta Börjen siviilisäädystä naimaton katselee naimisissa olevaa. jos Börje on naimisissa, katsoja on Anneli, ja jos Börje ei ole naimisissa, hän itse katselee naimisissa olevaa Christinaa.

Vaikka loogisena ongelmana tämä ei ollutkaan kovin hankala, oikeastaan kompatehtävä, on sen ratkaisuperiaatteella muitakin sovellusalueita. Ongelma tuli vastaan mainion James Grimen esittämänä, ja erityisesti tässä videossa oleva lisäongelma valaisee periaatteen käyttömahdollisuuksia.

0

Kadonnut euro

Kolme ystävystä oli ravintolassa. Kun laskun maksamisen aika tuli, jokainen ystävyksistä maksoi yhteisestä laskusta 15 euroa käteisellä. Kassanhoitaja huomasi kuitenkin laskuttaneensa heiltä viisi euroa liikaa ja käski tarjoilijaa palauttamaan rahan ystävyksille. Tarjoilija huomasi kuitenkin, ettei hän pystynyt jakamaan ylimääräistä viitosta tasan ystävysten kesken, joten hän turvautui röyhkeään temppuun: hän antoi kullekin ystävyksistä vain euron takaisin ja jemmasi kaksi euroa taskuunsa.

Mutta hetkinen… Ystävykset ovat nyt siis saaneet kukin euron takaisin, eli he ovat maksaneet 14 euroa per nuppi, 3\cdot 14=42. Tähän lisätään tarjoilijan kähveltämät kaksi euroa, joten saadaan yhteensä 44 euroa. Mihin yksi euro hävisi?


Ratkaisu: Tämä klassikkokompa esiintyy monissa lähteissä erilaisin variaatioin. Vastaus on tietenkin, ettei euro häviä minnekään, vaan koko kysymys on väärin aseteltu lukijan hämmentämiseksi. Ystävykset maksavat 45 euroa. Kassanhoitaja palauttaa viisi euroa, josta tarjoilija vetää välistä kaksi. Kolme euroa palautuu ystävyksille. Nyt siis 45 eurosta ravintola saa 40, tarjoilija 2 ja ystävykset 3. Menitkö lankaan?

0

Ménage à quatre

Hyvin tunnetussa (ja varsin helpossa) matemaattisessa ongelmassa pitää kuljettaa susi, lammas ja kaali veneellä joen yli, johon soutajan lisäksi mahtuu vain yksi muu matkustaja. Jutun juju on tietenkin se, että ellei soutaja ole paikalla vahtimassa, syö susi lampaan ja lammas kaalin. Kysymys kuuluu, kuinka nämä saadaan yhtenä kappaleena joen yli. Ratkaisepa tämä ensin, ellet ole jo ratkaissut!

Ian Stewart pistää kirjassaan Another Fine Math You’ve Got Me Into… vielä paremmaksi. Nyt kuljetettavana on mörkö, susi, lammas ja kaali, eikä veneeseen edelleenkään mahdu soutajan lisäksi kuin yksi muu matkalainen. Susi syö yhä lampaan ja lammas kaalin, ellei niitä valvota. Mörkö puolestaan iskee valvomattomana välittömästi hampaansa suteen, mikäli paikalla ei ole kaalia (jota se ei syö). Saadaanko retkue toisiaan popsimatta joen toiselle penkalle?

Kuva: Hasibul Haque Sakib/Flickr

Kuva: Hasibul Haque Sakib/Flickr (CC BY-NC 2.0)


Ratkaisu: Kuljetus onnistuu, vaikka mörkö onkin häiritsemässä. Ongelman voi ratkaista ihan päättelemälläkin, mutta mielestäni yksi kiehtova ratkaisutapa on tehdä geometrinen visualisointi tilanteesta. Näin tulkittuna ongelma on sukua taannoiselle muurahaisen vaikealle juoksulle.

Ratkaisuun tarvitaan tesseraktia eli neliulotteista hyperkuutiota, joka on muuten ihan samanlainen kuin tavallinen kolmiulotteinen kuutio, mutta sen jokaisessa kärjessä kohtaa neljä särmää kolmen sijasta.

Kuva: Sonja Šumonja/Geogebratube (CC BY-SA); muokkaus Hannu Sinisalo

Kuva: Sonja Šumonja/Geogebratube (CC BY-SA); muokkaus Hannu Sinisalo

Tavoitteena on päästä (kaali, lammas, susi, mörkö)-koordinaatiston pisteestä (0, 0, 0, 0) pisteeseen (1, 1, 1, 1), jossa jokainen koordinaatin vaihto vaihtaa yhden siirreltävän luontokappaleen paikkaa joen yhdeltä puolelta toiselle. Jokaisen koordinaatin vaihto vastaa tesseraktin yhden särmän kulkemista. Jokaisessa tesseraktin kärjessä osa särmistä poissuljetaan mahdottomina ja lopuista valitaan reitti, jolla jatketaan eteenpäin.

Ensimmäinen siirrettävä on oltava lammas. Siis ensimmäinen piste, johon origosta päädytään on pakko olla (0,1,0,0). Tämän jälkeen viedään mörkö, eli siirrymme pisteeseen (0,1,0,1). Sitten viedään kaali siirtymällä pisteeseen (1,1,0,1) ja tuodaan lammas takaisin siirrolla (1,0,0,1). Sitten viedään susi (1,0,1,1), ja lopulta viimeiseksi viedään lammas uudestaan (1,1,1,1).

Koetapa löytää ongelmaan vielä toinenkin ratkaisu – sellainen on olemassa.