0

Torimyyjän tappio

Kuva: Phil Romans / Flickr (CC BY-NC-ND 2.0)

Seuraava pulma on kuuluisan amerikkalaisen ongelmanlaatijan Sam Loydin (1841–1911) käsialaa, ja se tunnetaan myös Covent Gardenin ongelmana. Näin se kuuluu:

Tolvanen ja Penttinen myyvät omenoita torilla. Heillä on yhtä paljon omenoita, mutta Penttisen omenat ovat isompia. Siispä Penttinen myy kaksi omenaa eurolla, kun taas Tolvaselta saa kolme omenaa eurolla.

Eräänä päivänä Penttisen piti mennä muualle, ja hän pyysi Tolvasta myymään hänenkin omenansa. Omenakasat sekoitettiin ja hinnaksi asetettiin viisi omenaa kahdella eurolla. Seuraavana päivänä kaikki omenat oli myyty, ja oli aika jakaa potti. He olivat sopineet jakavansa omenoista saatavat rahat tasan. Mutta nyt Tolvanen ja Penttinen huomasivat, että he olivat hävinneet seitsemän euroa siihen nähden, mitä he olisivat tienanneet, jos he olisivat myyneet omenansa erikseen.

Viikon vaikea kysymys on, paljonko Penttinen hävisi myyntijärjestelyssä.


Ratkaisu: Omenoiden kokonaismäärän on oltava viidellä jaollinen, jotta ne kaikki voidaan myydä viiden kappaleen erinä. Mutta jotta omenoista voitaisiin erotella Penttisen ja Tolvasen osuudet (tasaeuroina), on omenoita oltava vähintään 60, joista Tolvanen olisi itse myydessään saanut 10 euroa 30 omenasta ja Penttinen 15 euroa 30 isommasta omenasta.

Nyt 60 omenasta he saivat yhteensä 12\cdot 2=24 euroa, joten he häviävät yhden euron siihen nähden, että olisivat myyneet omenat erikseen. Näin ollen Tolvasen myydessä molempien omenat yhteensä seitsemän euron tappiolla on omenoita ollut alun perin 7\cdot 60=420. Kummallekin kauppiaalle jää siis käteen 7\cdot 12=84 euroa. Jos Penttinen olisi myynyt 210 omenaa itsekseen, olisi hän saanut niistä 210/2=105 euroa, joten Penttinen hävisi järjestelyssä 21 euroa.

3

Järvinen, Mäkinen ja Virtanen

Sain käsiini Alex Bellosin upouuden pulmakirjan Can You Solve My Problems? (Guardian Books, 2016), jossa jäin ensimmäisen kerran jumiin heti ensimmäisellä sivulla (tästä ongelmasta myöhemmin lisää). Ensivaikutelma kirjasta on, että nyt ollaan pulmakirjallisuuden tulevan klassikon äärellä. Huippulaatua!

Mutta asiaan. Seuraava pulma löytyy Bellosin kirjasta. Se on laatinut Henry Ernest Dudeney, ja se on julkaistu vuonna 1930 lontoolaisessa The Strand Magazinessa.1 Dudeneyn pulma saavutti aikanaan maailmanlaajuisen suosion. Tässä se tulee.

Järvinen, Mäkinen ja Virtanen ovat junan kuljettaja, konduktööri ja myyjä, eivät tosin välttämättä tässä järjestyksessä. Sattumalta junassa matkustavat herrat Järvinen, Mäkinen ja Virtanen, joihin jatkossa viitataan arvonimellä herra. Tiedetään seuraavaa:

  • Herra Virtanen asuu Tampereella.
  • Myyjä asuu Tampereen ja Helsingin puolessavälissä.
  • Herra Mäkinen tienaa 70000 euroa vuodessa.
  • Järvinen voittaa konduktöörin biljardissa.
  • Myyjän seinänaapuri (eräs matkustajista) tienaa tasan kolminkertaisesti myyjään verrattuna.
  • Myyjän sukunimikaima asuu Helsingissä.

Viikon vaikea kysymys on tietenkin, että mikä on junan kuljettajan nimi.

Kuva: Tomi Lattu/Flickr (CC BY 2.0)

Kuva: Tomi Lattu/Flickr (CC BY 2.0)


Ratkaisu: Koska Järvinen voittaa konduktöörin biljardissa, ei Järvinen ole konduktööri. Koska herra Mäkinen tienaa tasan 70000 euroa, ei hän voi olla myyjän seinanaapuri, koska 70000 ei ole kolmella jaollinen luku. Tämän vuoksi hänen on oltava Helsingissä asuva myyjän sukunimikaima, koska herra Virtanen asuu Tampereella. Myyjä on siis Mäkinen. Ja koska Järvinen ei ole myyjä eikä konduktööri, on hän junan kuljettaja.

0

Kuninkaan yt-neuvottelut

Vierailimme vaimoni vanhassa kotitalossa, jossa tein huiman löydön: hänen vanhoista tavaroistaan löytyi kenenpä muunkaan kuin Lewis Carrollin The Complete Illustrated Lewis Carroll (Wordsworth Editions, 1996). Kirjaa selatessani törmäsin noin vuodelta 1870 peräisin olevaan Puzzles from Wonderland -tekstiin, jossa Carroll riimittelee hauskasti seitsemän pulmaa vastauksineen. Niistä viimeinen on tässä.1

Kuningas huomasi, että hänen rahansa olivat lähes lopussa, ja että hänen oli elettävä säästäväisemmin. Hän päätti irtisanoa suurimman osan neuvonantajistaan. Heitä oli satoja – hienoja vanhoja miehiä juhlavissa vihreissä samettiviitoissa, joissa oli kultaiset napit. Neuvonantajissahan ei varsinaisesti ollut muuta vikaa kuin että he puhuivat keskenään aivan ristiin, kun heidän neuvojaan kysyttiin; lisäksi he olivat järkyttävän kovia syömään ja juomaan. Kaikkiaan kuningas oli ihan tyytyväinen päästessään heistä eroon. Mutta valtakunnassa oli eräs ikivanha laki, jota kuningaskaan ei tohtinut rikkoa. Laki määräsi neuvonantajien määrästä seuraavaa:

”Seitsemän molemmista silmistä sokeaa:

Kaksi yhdestä silmästä sokeaa:

Neljä jotka näkevät molemmilla silmillä:

Yhdeksän jotka näkevät yhdellä silmällä.”

Mikä oli neuvonantajien vähimmäismäärä?

Kuva: Wikimedia Commons

Kuva: Wikimedia Commons


Ratkaisu: Neuvonantajia tarvitaan vähintään kuusitoista, sillä kokonaan sokea voidaan laskea toisesta silmästä sokeaksi ja kokonaan näkevä voidaan laskea toisella silmällä näkeväksi. Mutta annetaanpa Lewis Carrollin vastata ihan omin sanoin:

Five seeing, and seven blind
Give us twelve, in all, we find;
But all of these, ’tis very plain,
Come into account again.
For take notice, it may be true,
That those blind of one eye are blind for two;
And consider contrariwise,
That to see with your eye you may have your eyes;
So setting one against the other—
For mathematician no great bother—
And working the sum, you will understand
That sixteen wise men still trouble the land.

3

Valkeita palloja pussissa

Pussissa on joko musta tai valkoinen pallo. Laitetaan pussiin valkoinen pallo ja nostetaan tämän jälkeen sattumanvaraisesti toinen palloista pois. Millä todennäköisyydellä pussiin jää valkoinen pallo, jos nostettu pallo oli valkoinen?

Tämä hauska ongelman lienee keksinyt brittimatemaatikko Charles Lutwidge Dodgson (1832–1898). Jälkimaailma tuntee hänet paremmin kirjailijanimellä Lewis Carroll.


Ratkaisu: Seuraavat nostojärjestykset ovat ainoat mahdolliset:

  1. Valkoinen pallo 1 ja valkoinen pallo 2.
  2. Valkoinen pallo 2 ja valkoinen pallo 1.
  3. Valkoinen pallo 1 ja musta pallo 1.

Tapauksilla 1–3 on sama todennäköisyys, joten kysytty todennäköisyys on \frac{2}{3}.

 

0

Kadonnut euro

Kolme ystävystä oli ravintolassa. Kun laskun maksamisen aika tuli, jokainen ystävyksistä maksoi yhteisestä laskusta 15 euroa käteisellä. Kassanhoitaja huomasi kuitenkin laskuttaneensa heiltä viisi euroa liikaa ja käski tarjoilijaa palauttamaan rahan ystävyksille. Tarjoilija huomasi kuitenkin, ettei hän pystynyt jakamaan ylimääräistä viitosta tasan ystävysten kesken, joten hän turvautui röyhkeään temppuun: hän antoi kullekin ystävyksistä vain euron takaisin ja jemmasi kaksi euroa taskuunsa.

Mutta hetkinen… Ystävykset ovat nyt siis saaneet kukin euron takaisin, eli he ovat maksaneet 14 euroa per nuppi, 3\cdot 14=42. Tähän lisätään tarjoilijan kähveltämät kaksi euroa, joten saadaan yhteensä 44 euroa. Mihin yksi euro hävisi?


Ratkaisu: Tämä klassikkokompa esiintyy monissa lähteissä erilaisin variaatioin. Vastaus on tietenkin, ettei euro häviä minnekään, vaan koko kysymys on väärin aseteltu lukijan hämmentämiseksi. Ystävykset maksavat 45 euroa. Kassanhoitaja palauttaa viisi euroa, josta tarjoilija vetää välistä kaksi. Kolme euroa palautuu ystävyksille. Nyt siis 45 eurosta ravintola saa 40, tarjoilija 2 ja ystävykset 3. Menitkö lankaan?

0

1089

Tässäpä oiva temppu. Ajattele mitä tahansa kolminumeroista lukua, joka koostuu eri numeroista1. Lue luku myös lopusta alkuun ja vähennä isommasta luvusta pienempi. Käännä tämä erotus myös lopusta alkuun ja laske yhteen edellisen luvun kanssa. Tulos on aina 1089.

Siis esimerkiksi: ajattelen lukua 497. Seuraava luku on 794. Siis 794-497=297. Ja nyt 297+792=1089.

Tämä hiljattain mieleeni palannut temppu on yksi ”matemagiikan” klassikoista. Taisin törmätä siihen ensimmäisen kerran joitakin vuosia sitten lukemassani David Achesonin kirjassa 1089 And All That. Viikon vaikea kysymys on, miksi temppu toimii.


Ratkaisu: Ajatellaan, että kolminumeroinen lukumme on abc, jossa yleisyydestä luopumatta voidaan olettaa, että a>c. Nyt siis ensimmäinen erotus saa muodon (a\cdot 100+b\cdot 10+c)-(c\cdot 100+b\cdot 10+a)=(a-c)\cdot 100+(c-a). Nyt (c-a)<0, joten saatu erotus voidaan kirjoittaa muotoon (a-c-1)\cdot 100+90+(10-(a-c)). Ja nyt kun tähän lisätään (10-(a-c))\cdot 100+90+(a-c-1), on tuloksena aina 900+180+9=1089.

Muuten, temppua voi jatkaa seuraavasti, jos käsillä on laskin: lisää saamaasi lukuun (eli 1089) vielä 200, jaa 10000:llä ja kerro saamasi luku kuudella. Ja koska tässä on ollut kyse lukujen kääntelystä, käännä nyt koko laskimen näyttö ylösalaisin.

Tämä temppu jatkoineen tuli eteen Rob Eastawayn ja Jeremy Wyndhamin kirjassa Why do Buses Come in Threes? joka oli jälleen hyvä esimerkki kirjasta, jonka hankin pelkän nimen perusteella, kun luotettava henkilö sitä suositteli. Suosittelen minäkin.

0

Lisää tyttöjä

Eräässä teoreettisessa valtiossa haluttiin, että naisten osuus väestöstä kasvaisi. Niinpä valtion parlamentti hyväksyi lain, jonka mukaan kuhunkin perheeseen piti saada tyttölapsi. Jos perheeseen oli syntynyt tyttö, oli lasten hankkiminen lopetettava. Jos taas perheessä oli vain poikalapsia, oli lasten hankkimista jatkettava tytön syntymiseen asti. Toisin sanoen perheiden oli hankittava lapsia tytön syntymiseen asti.

Oletetaan, että jokainen syntyvä lapsi on joko tyttö tai poika. Oletetaan myös, että tyttöjen ja poikien syntymätodennäköisyydet ovat samat. Kun populaation koko vähitellen tasoittuu, kuinka suureksi tyttöjen osuus syntyvistä lapsista kasvaa? Jatko-ongelmana voidaan pohtia, mikä on suurin mahdollinen tyttöjen osuus populaatiosta ja millä (riittävän humaaneilla) keinoilla se voidaan saavuttaa.

Tämä pulma kuuluu tilastomatematiikan klassikkoihin. Viimeisimpänä sen tapasin The Guardianiin pähkinäpalstaa kirjoittavan Alex Bellosin videoblogista. Bellos on kirjoittanut kirjoja paitsi matematiikasta myös jalkapallosta, joten hän on sikälikin sangen fiksu heppu.

Ongelman ratkaisu on tässä.

0

Juokseva koira

Pulmakulmani ensimmäinen ongelma on vanha Martin Gardnerin klassikko. Kuulin ongelman ensimmäisen kerran opetusharjoitteluni aikana eräältä lyhyen matematiikan opiskelijalta. Tässä onkin vinkki sen ratkaisemiseen: hirveän monimutkainen mallinnus ei ole tarpeen! Oli hauskaa katsoa, kun viisi yliopistotason fyysikkoa piirtelee taulun täyteen yhtälöitä parin päivän ajaksi ja takoo päätään seinään. Lopulta sangen yksinkertainen ja yleispätevä malli vie maaliin asti. Mutta asiaan.

Koira lähtee juoksemaan vakionopeudella 50 metriä pitkän jonon perältä kohti jonon kärkeä. Jono lähtee samaan aikaan liikkeelle, myös vakionopeudella. Kun koira saavuttaa jonon kärjen, se kääntyy välittömästi takaisin (oletetaan siis, että tähän ei kulu aikaa) ja jatkaa matkaansa samalla vakionopeudella kohti jonon häntää. Kun koira saavuttaa jonon hännän, on jono edennyt 50 metriä. Kuinka pitkän matkan koira juoksi?

Ongelman ratkaisu on tässä.