3

Järvinen, Mäkinen ja Virtanen

Sain käsiini Alex Bellosin upouuden pulmakirjan Can You Solve My Problems? (Guardian Books, 2016), jossa jäin ensimmäisen kerran jumiin heti ensimmäisellä sivulla (tästä ongelmasta myöhemmin lisää). Ensivaikutelma kirjasta on, että nyt ollaan pulmakirjallisuuden tulevan klassikon äärellä. Huippulaatua!

Mutta asiaan. Seuraava pulma löytyy Bellosin kirjasta. Se on laatinut Henry Ernest Dudeney, ja se on julkaistu vuonna 1930 lontoolaisessa The Strand Magazinessa.1 Dudeneyn pulma saavutti aikanaan maailmanlaajuisen suosion. Tässä se tulee.

Järvinen, Mäkinen ja Virtanen ovat junan kuljettaja, konduktööri ja myyjä, eivät tosin välttämättä tässä järjestyksessä. Sattumalta junassa matkustavat herrat Järvinen, Mäkinen ja Virtanen, joihin jatkossa viitataan arvonimellä herra. Tiedetään seuraavaa:

  • Herra Virtanen asuu Tampereella.
  • Myyjä asuu Tampereen ja Helsingin puolessavälissä.
  • Herra Mäkinen tienaa 70000 euroa vuodessa.
  • Järvinen voittaa konduktöörin biljardissa.
  • Myyjän seinänaapuri (eräs matkustajista) tienaa tasan kolminkertaisesti myyjään verrattuna.
  • Myyjän sukunimikaima asuu Helsingissä.

Viikon vaikea kysymys on tietenkin, että mikä on junan kuljettajan nimi.

Kuva: Tomi Lattu/Flickr (CC BY 2.0)

Kuva: Tomi Lattu/Flickr (CC BY 2.0)


Ratkaisu: Koska Järvinen voittaa konduktöörin biljardissa, ei Järvinen ole konduktööri. Koska herra Mäkinen tienaa tasan 70000 euroa, ei hän voi olla myyjän seinanaapuri, koska 70000 ei ole kolmella jaollinen luku. Tämän vuoksi hänen on oltava Helsingissä asuva myyjän sukunimikaima, koska herra Virtanen asuu Tampereella. Myyjä on siis Mäkinen. Ja koska Järvinen ei ole myyjä eikä konduktööri, on hän junan kuljettaja.

0

Keskinopea juna

Tavarajuna ajaa pysähtymättä 800 kilometriä täsmälleen 80 kilometrin keskituntinopeudella. Sen nopeus ei kuitenkaan pysy matkan varrella vakiona. Osoita, että juna ajaa jonkin 80 kilometrin mittaisen pätkän matkastaan täsmälleen yhdessä tunnissa.

Tämä ongelma on jälleen Martin Gardneria parhaimmillaan, alkujaan Scientific American -lehden joulukuun 1979 numerosta.

Kuva: Henk Sijgers/Flickr (CC BY-NC 2.0)

Kuva: Henk Sijgers/Flickr (CC BY-NC 2.0)


Ratkaisu: Jaetaan matka-aika kymmeneen tunnin mittaiseen pätkään. Jos juna kulkee jonkin näistä aikana täsmälleen 80 kilometriä, on ongelma ratkaistu. Jos taas yhdessäkään näistä juna ei kulje täsmälleen 80 kilometriä, valitaan kaksi peräkkäistä pätkää, joista toisen aikana matkataan hieman yli ja toisen aikana hieman alle 80 kilometriä — kuinka päin, sillä ei ole väliä. Oletetaan yksinkertaisuuden vuoksi, että ensimmäisellä pätkällä keskinopeus oli jonkin verran alle 80 km/h.

Kuvitellaan nyt, että meillä on tunnin mittainen aikajanatikku. Asetetaan se ensin ensimmäisen pätkän alkuun ja aletaan sitten liikuttaa sitä kohti jälkimmäisen pätkän loppua. Aikajanatikun osoittamana aikana kuljettu matka on aluksi alle 80 kilometriä ja lopuksi yli 80 kilometriä. Koska muutos on jatkuva, osuu johonkin kohtaan alku- ja loppupisteiden välille tasan tunnin mittainen pätkä, jonka aikana juna kulkee täsmälleen 80 kilometriä.

Pulmasta tekemäni Geogebra-appletti on saatavilla vapaasti Geogebratubessa. Ongelmaa vastaava kuvaaja on piirretty aika–matka-koordinaatistoon, jossa kunkin aikavälin keskinopeuden saa sekantin kulmakertoimena.