4

Jännä jono

Aikakauslehtien pulmapalstoilta löytyy silloin tällöin tehtäviä, joissa täytyy jatkaa loogisesti annettua lukujonoa. Periaatteessa näissä tehtävissä ei ole päätä eikä häntää, sillä ellei äärettömäksi tarkoitetun jonon muodostamissääntöä ole annettu, voidaan sitä jatkaa millä tavalla tahansa. Siis valideja jatkotapoja jonolle 2, 4, 8,\ldots olisivat 16, 32, 64,\ldots yhtä hyvin kuin 90, 0, 22, \ldots. Kysymyksen muotoilun pitäisikin siis olla, että millä säännöllä kyseinen jono voidaan muodostaa ja miten se sillä säännöllä jatkuisi.

Mutta eipä takerruta liikaa tähän semantiikkaan. Yksi suosikkijonoistani alkaa

    \[13, 1113, 3113, 132113,\ldots\]

Viikon vaikea kysymys on, kuinka sitä jatketaan loogisesti.


Ratkaisu: Jono jatkuu 1113122113, 311311222113, \ldots eli aivan kuten kommentoijamme Mikko tuossa alla jo toteaakin. Kyseessä on niin kutsuttu ”sano mitä näet”-jono, eli logiikka taustalla on sanoa, mitä jonon edellisessä termisasä on. Näin ollen termiä 13 seuraa yksi ykkönen ja yksi kolmonen, siis 1113. Tämän jälkeen tulee kolme ykköstä ja yksi kolmonen, eli 3113. Sitten yksi kolmonen, kaksi ykköstä, yksi kolmonen, eli 132113. Ja niin edelleen.

Lukujonoista kiinnostuneiden aarreaitta on Neil Sloanen jo 1960-luvulta asti ylläpitämä tietokanta The On-Line Encyclopedia of Integer Sequences eli OEIS, joka löytyy osoitteesta oeis.org. Sieltä löytyy ”ihan kaikki”, ja sivusto päivittyy yhä aktiivisesti. Tämän pulman lukujono löytyy sieltä koodilla A006715.

0

Tylppäkulmainen kolmio

Ajattelin aluksi kysyä seuraavaa. Valitaan tasosta kolme sattumanvaraista pistettä. Millä todennäköisyydellä ne ovat tylppäkulmaisen kolmion kärkipisteet?

Tämä pirullisen haastava pulma löytyy Charles Lutwidge Dodgsonin (eli Lewis Carrollin) kirjasta Pillow-Problems. Hän on siis keksinyt ja ratkonut pulman päässään unettomana yönä. Tähän ongelmaan liittyy kuitenkin isohko mutta: se ei ole hyvin määritelty, sillä riippuen ratkaisun lähestymistavasta tehtävään voi saada monta erilaista ratkaisua. Alkuperäisen ongelman täydellinen ratkaisu vaatisi noin seitsemän sivua hyvää matematiikkaa (sisältää juonipaljastuksia – älä avaa, jos haluat ratkoa pulman itse!), mikä ei suinkaan ollut alkuperäinen ajatukseni pulmaa tänne laittaessani. Kysytään siis nyt täsmällisemmin sitä, mitä halusin kysyä. Ihan riittävän vaikea tämä pulma on seuraavanlaisellakin muotoilulla.

Valitaan mielivaltaiset pisteet A ja B tasosta. Millä todennäköisyydellä kolmio ABC on tylppäkulmainen, kun AB on kolmion pisin sivu ja C on satunnainen tämän ehdon täyttävä piste?

Lisähupia ongelmaan saa sillä, että laskee todennäköisyyden tylppäkulmaiselle kolmiolle, kun AB on toiseksi pisin sivu.

Pulmaa muokattu 30.5.2016 klo 19.35 asiasta Facebookissa virinneen keskustelun vuoksi. Kiitokset avusta, Antti Saarinen ja Toni Vaahtera!

2

Rehdit, retkut ja normaalit

Loogisten arvoitusten erikoismiehen Raymond Smullyanin kirjassa Mikä tämän kirjan nimi on? (Terra Cognita 2003, suom. Hannele Salminen) tutkitaan usein rehtejä, jotka puhuvat aina totta, ja aina valehtelevia retkuja. Joissakin ongelmissa mukana on myös kolmas kasti: normaalit, joista ei voi olla varma, puhuvatko he totta vai valehtelevatko. Niin myös tässä hauskassa pulmassa.

Rehtien, normaalien ja retkujen yhteisössä vallitsee tiukka kastijako. Rehdit ovat ylintä kastia, normaalit keskikastia ja retkut alinta kastia. Antti ja Tuomo esittävät seuraavat repliikit:

Antti: ”Olen alempaa kastia kuin Tuomo.”

Tuomo: ”Ei pidä paikkaansa!”

Voimmeko tästä päätellä, mihin kasteihin Antti ja Tuomo kuuluvat? Entä voimmeko päätellä, onko kumpikaan repliikeistä totta?


Ratkaisu: Antti ja Tuomo ovat normaaleja. Antti valehtelee, mutta Tuomo puhuu totta.

Antti ei voi olla rehti, sillä silloin hän ei voisi olla alempaa kastia kuin Tuomo. Jos Antti olisi retku, olisi hänen väitteensä valhetta, jolloin Tuomonkin olisi oltava retku. Tällöin taas Tuomon oma väittämä olisi totta, mikä on ristiriita retkuuden kanssa. Antin on siis oltava normaali.

Tuomo ei voi olla rehti, sillä silloin hän ei voisi totuudessa pysyen kiistää Antin väittämää. Jos taas Tuomo olisi retku, olisi hänen väittämänsä yhä ristiriidassa totuuden kanssa. Tuomo on siis totta puhuva normaali ja Antti normaali valehtelija.

0

Kumma kartta

Helsingin Sanomat uutisoi 3.5.2016 citykanien kummallisista kuolemista Käpylässä ja Haagassa. Tarkkaavainen lukijamme Kössi huomasi jotain vielä kummallisempaa: juttuun liitetty karttalinkki osoitti aika kauas pääkaupunkiseudulta. No, nokkelana miehenä Kössi otti ja selvitti, mikä oli mennyt toimituksessa pieleen. Osaatko sinä ratkaista, mistä on kyse?

Kuvakaappaus uutisesta HS:n verkkosivuilla.

Kuvakaappaus uutisesta HS:n verkkosivuilla.


Ratkaisu: Karttalinkissä on vahingossa sama pituus- ja leveyspiiri.

0

Hyvät, pahat ja rumat

Sergio Leonen lännenelokuvan Hyvät, pahat ja rumat (1966) loppukohtauksessa Clint Eastwood, Lee Van Cleef ja Eli Wallach käyvät kuuluisan kolmintaistelun hautausmaalla, jonka asetelma on myös matemaattisesti kiintoisa: tällaisessa tilanteessahan nopein vetäjä ei automaattisesti olekaan vahvimmilla. Tarvitaan jonkinlaista optimointistrategiaa, jota voidaan mallintaa todennäköisyyslaskennan keinoin.

Kuva: Jacques Meynier de Malviala / Flickr (CC BY-NC-ND 2.0)

Kuva: Jacques Meynier de Malviala / Flickr (CC BY-NC-ND 2.0)

Leonen elokuvassa käsikirjoitus tietysti sanelee lopputuloksen, mutta kokeillaanpa kolmintaistelua tiukemmilla säännöillä. Arvotaan ensin ampumisjärjestys ja noudatetaan sitä loppuun asti. Ammutaan vuorojärjestyksessä yksi kuti kerrallaan minne tahansa, kunnes pystyssä on enää yksi mies. Oletetaan, että Clint osuu kohteeseensa aina, Lee 80 prosentin varmuudella ja Eli 50 prosentin varmuudella. Oletetaan vielä, että kaikki noudattavat parasta strategiaa, ja että kehenkään ei osu vahinkokimmokkeita. Kuka kolmikosta on todennäköisin taistelun voittaja? Mitkä ovat kunkin miehen täsmälliset selviytymismahdollisuudet?

Ongelman löysin jälleen Martin Gardnerin kautta; hän kertoo, että se on esiintynyt useissa lähteissä ainakin 1930-luvun lopulta alkaen.


Ratkaisu: Todennäköisin ammuskelun henkiinjäänyt on Eli. Hänelle paras strategia on ammuskella ilmaan siihen asti, kunnes jäljellä on vain toinen vastapelureista, sillä he tähtäävät varmasti toisiaan niin kauan kuin heissä henki pihisee, ja hyökätä sitten henkiinjääneen kimppuun. Mutta käydään nyt kunkin pyssysankarin mahdollisuudet läpi.

Clintin henkiinjäämisprosentti on helppo selvittää. Jos hän aloittaa Leetä vastaan, hän ampuu tämän. Jos taas Lee aloittaa, on Clintillä 20 prosentin mahdollisuus selvitä. Koska nämä tapaukset ovat erilliset ja yhtä todennäköiset, on Clintin selviämismahdollisuus Leetä vastaan \frac{1}{2}+\frac{1}{2}\cdot\frac{1}{5}=\frac{3}{5}. Koska tämän jälkeen Clint selviää 50 prosentin todennäköisyydellä Elin laukauksesta, joten kaikkiaan Clintin eloonjäämistodennäköisyys on \frac{3}{5}\cdot\frac{1}{2}=\frac{3}{10}=30\%.

Lee selviytyy voittajana Clintiä vastaan todennäköisyydellä \frac{2}{5}. Tämän jälkeen hän ajautuu kaksintaisteluun Elin kanssa. Jos hän selviytyy Elin ensimmäisestä laukauksesta, voittaa hän 80 prosentin todennäköisyydellä. Tämän jälkeen hän voi voittaa toisella laukauksellaan, ellei Eli osu, ja edelleen kolmannella, neljännellä, viidennellä laukauksella, kunnes ratkaisu tulee. Ensimmäisen laukauksen voiton todennäköisyys on \frac{1}{2}\cdot\frac{4}{5}=\frac{4}{10}, toisen laukauksen \frac{1}{2}\cdot\frac{1}{5}\cdot\frac{1}{2}\cdot\frac{4}{5}=\frac{4}{100} ja niin edelleen. Kaikkiaan Leen voittomahdollisuudet mittelössä Elin kanssa muodostavat geometrisen summan

    \[\frac{4}{10}+\frac{4}{100}+\frac{4}{1000}+\frac{4}{10000}+\cdots\]

Tämä taas voidaan ilmoittaa päättymättömänä desimaalikehitelmänä 0,44444\ldots=\frac{4}{9}. Lee siis voittaa Elin todennäköisyydellä \frac{4}{9}, joka yhdistettynä voittotodennäköisyyteen Clintiä vastaan antaa Leen kokonaistodennäköisyydeksi selvitä \frac{2}{5}\cdot\frac{4}{9}=\frac{8}{45}\approx 17,8\%.

Elin voittotodennäköisyys on nyt 1-\frac{3}{10}-\frac{8}{45}=\frac{47}{90}\approx 52,2\% ja siis selvästi paras kolmesta.

Jos Eli ei paukuttelisikaan ilmaan, vaan tähtäisi vaarallisimpaan vastustajaansa vuorollaan alusta asti, hänen selviämismahdollisuutensa olisi noin 44,7\%. Tällöin Leen mahdollisuudet nousisivat 31,1 prosenttiin ja Clintin mahdollisuudet olisivat vain noin 24,2\%.

0

Suorakaide neljännesympyrällä

Näyttökuva 2016-4-20 kello 7.18.48Neliön sisään piirretään neljännesympyrä niin, että neliön ylänurkasta voidaan erottaa kuvan mukainen neljännesympyrää koskettava suorakulmio, jonka sivut ovat 1 ja 8. Kuinka pitkä on neliön sivu?

Tämä pulma tuli vastaan jokin aika sitten Twitterissä. Tässä muodossa pulma on Matthew Scroggsilta.


Ratkaisu: Olkoon neliön sivu (ja samalla neljännesympyrän säde) r. Piirretään neljännesympyrän kehältä kohtisuora jana neliön sivulle. Nyt saadaan suorakulmainen kolmio, jonka sivujen pituudet ovat r-8, r-1 ja r. Tästä Pythagoraan mukaan saadaan (r-8)^2+(r-1)^2=r^2. Yhtälön ratkaisut ovat r=13 ja r=5, mutta jälkimmäinen ei tietenkään kelpaa, sillä selvästi r>8.Näyttökuva 2016-4-25 kello 11.06.01

5

Pyörivä pöytä ja helisevä tiuku

Pöydän pyörittely on matemaattisessa mielessä sangen kiehtovaa, oli sitten kyseessä epätasainen keittiön lattia tai väärässä järjestyksessä istuvat ritarit. Myös tässä ongelmassa tarvitsee pyöritellä pöytää.

Neliön muotoisen pöydän jokaisessa nurkassa on kolo, johon on asetettu juomalasi joko ylösalaisin tai oikein päin. Omituisella mekaniikalla laseihin on kytketty pieni tiuku, joka helähtää, mikäli kaikki lasit ovat samoin päin. Koloihin ei näe, mutta niihin pystyy työntämään käden niin, että tunnustelemalla selviää, kuinka päin lasi on. Lisäksi lasin pystyy kääntämään. Pöytää voidaan pyörittää keskipisteensä ympäri niin, että kun pyöriminen loppuu, ei mitenkään voida paljaalla silmällä päätellä, mikä koloista on mikäkin. Omituinen häkkyrä siis.

Pelataan seuraavanlaisin säännöin: pyöräytetään pöytää, jonka jälkeen työnnetään kädet yhtä aikaa mihin tahansa kahteen eri koloon. Koloissa voi tunnustella laseja ja sen jälkeen kääntää joko molemmat lasit tai vain toisen. Kumpaakaan lasia ei ole pakko kääntää. Tarkasteltavat kolot on kuitenkin valittava samanaikaisesti ja ennen kuin menee räpeltämään mitään. Tavoite on saada tiuku helisemään. Alkutilanne on muuten sattumanvarainen, mutta voidaan olettaa, että kaikki lasit eivät ole samoin päin (sillä silloinhan tiuku helisisi jo).

Mikä on pienin määrä pyöräytyksiä, jonka jälkeen tiu’un saa varmasti helisemään? Miten se tehdään?

Myös tämä pulma on Martin Gardnerilta. Poimin sen mainiosta teoksesta The Colossal Book of Short Puzzles and Problems (W.W. Norton & Co, 2006). Pulman esitettyään Gardner jatkaa, että jos pöydässä olisi vain kaksi koloa, olisi ratkaisu tietenkin triviaali: kädet koloihin ja lasit samoin päin. Myöskään kolmikoloinen pöytä ei ole kovin vaikea ratkaistava. Jos ensimmäisellä yrityksellä molemmat lasit ovat samoin päin, käännetään ne toisin päin ja johan helisee. Jos taas ne ovat eri päin, käännetään ne molemmat esimerkiksi alassuin, jonka jälkeen toisella yrityksellä helinä on varma. Edelleen Gardner toteaa, että voidaan osoittaa, ettei viisikoloista pöytää pysty ratkaisemaan – ainakaan alle kolmekätisenä pyörittäjänä.


Ratkaisu: Viisi pyöräytystä riittää aina. Toimitaan näin:

  1. Otetaan vastakkaisissa koloissa olevat lasit ja käännetään ne molemmat ylöspäin. Jos tiuku ei nyt helise, jatketaan pyörittämistä.
  2. Otetaan vierekkäiset lasit ja käännetään ne ylöspäin, elleivät ne jo ole. Jos tiuku ei vieläkään helise, nyt tiedetään, että kolme laseista on ylöspäin ja yksi alaspäin. Pyöritetään pöytää uudestaan.
  3. Valitaan jälleen vastakkaiset kolot. Jos toinen laseista on alaspäin, käännetään se ja tiuku helisee. Jos taas molemmat ovat ylöspäin, käännetään toinen, jolloin välttämättä kaksi vierekkäistä lasia on ylöspäin ja kaksi vierekkäistä alaspäin. Pyöritetään edelleen.
  4. Valitaan kaksi vierekkäistä koloa. Jos lasit ovat samoin päin, käännetään molemmat ja tiuku helisee. Jos ne taas ovat eri päin, käännetään jälleen molemmat, jolloin varmasti kaksi vastakkaista lasia on ylöspäin ja toiset kaksi vastakkaista alaspäin. Pyöritetään.
  5. Valitaan vastakkaiset lasit ja käännetään ne molemmat toisin päin. Tiuku helisee.
2

Keikkuva pöytä

Kuva: Henning Mühlinghaus / Flickr (CC BY-NC 2.0)

Kuva: Henning Mühlinghaus / Flickr (CC BY-NC 2.0)

Keittiön lattia on hieman epätasainen. Kun lattialle koettaa asettaa pientä nelijalkaista neliönmuotoista pöytää, tuntuu yksi jalka koko ajan keikkuvan vähän ilmassa. Yhden jalan alle asetetulla paperitollolla pöytä saadaan kyllä tuettua.

Jos ei välitetä siitä, jääkö pöydän pinta ihan suoraan vai ei, onko mahdollista löytää lattialta sellainen kohta, että kaikki neljä pöydänjalkaa ovat yhtä aikaa kiinni lattiassa? Vai voiko lattia aaltoilla niin, ettei tällaista kohtaa löydy?

Tämä Martin Gardnerin Scientific Americanissa toukokuussa 1973 esittämä pulma kuuluu suuriin pulmasuosikkeihini.


Ratkaisu: Kuten Antti S. alla kommentoi, tasapaino löytyy kiertämällä korkeintaan 90 astetta pitäen samalla kaksi jalkaa varmasti lattiaa vasten. Kolmas jalka ei voi kohota maasta ennen neljännen siihen osumista. Tällä pulmallahan on muuten ihan käytännön sovelluskin: jos pitää kiivetä vaikkapa jakkaralle lamppua vaihtamaan tai muuten korkealle roikkimaan, voi jakkaran kiertää tasaiseen asentoon, mikäli se ensin hieman keikkuu.

 

0

Piste kolmiossa

Millä todennäköisyydellä umpimähkään valittu tasasivuisen kolmion sisällä oleva piste on lähempänä kolmion painopistettä kuin mitään kolmion sivuista?

Tämän pulman esitti Colin Beveridge Twitterissä. Pulma on hieman hankalampi kuin miltä se päälle päin näyttää, mutta se on ratkaistavissa ihan lukiotiedoilla.


Ratkaisu: pisteenetaisyysYleisyydestä luopumatta voimme sijoittaa kolmion yhden kärjen origoon ja asettaa sivun pituudeksi 1 yksikön. Tällöin painopisteen D koordinaatit ovat \left(\frac{1}{2},\frac{\sqrt{3}}{6}\right). Paraabeli on määritelmänsä mukaan niiden pisteiden joukko, jotka ovat yhtä etäällä annetusta pisteestä ja annetusta suorasta. Näin ollen kysyttyä aluetta rajaa kolme paraabelin kaarta, eli se jää pisteiden E, F ja I väliin. Symmetrian nojalla voidaan rajoittua kolmioon ABD. Tämän jälkeen tehtävä ratkeaa geometristä todennäköisyyttä soveltamalla.

Kolmion ABD ala on \frac{\sqrt{3}}{12}. Kolmioiden AGE ja BHF alat saadaan yhdenmuotoisuutta soveltamalla: Olkoon EG pystysuora. Nyt tasasivuisen kolmion puolikkaana kulmana kulma EAG=30^{\circ}, jolloin kulma GEA=60^{\circ}. Tästä seuraa, että \frac{EG}{EA}=\frac{1}{2}. Koska paraabelin määritelmän nojalla EG=ED, niin AE=\frac{2}{3}AD, jolloin kolmioiden AGE ja AJD yhdenmuotoisuuden vuoksi saadaan kolmion AGE alaksi (\frac{2}{3})^2\cdot \frac{1}{2}\cdot\frac{\sqrt{3}}{12}=\frac{\sqrt{3}}{54}. Symmetrian nojalla tämä on myös kolmion BHF ala.

Pisteiden E ja F kautta kulkevan paraabelin yhtälön selvittämiseksi huomataan ensin, että paraabelin huipun koordinaattien on oltava \left(\frac{1}{2},\frac{\sqrt{3}}{12}\right). Tästä saadaan paraabelille ns. huippumuotoinen yhtälö

    \[y-\frac{\sqrt{3}}{12}=a\left(x-\frac{1}{2}\right)^2,\]

Nyt, edellisen mittakaavatarkastelun perusteella saadaan paraabelin pisteelle E koordinaatit E=\left(\frac{1}{3},\frac{\sqrt{3}}{9}\right). Yllä olevan yhtälöön sijoittamalla saadaan, että a=\sqrt{3}. Pisteiden E, F, G ja H välinen ala saadaan määrättynä integraalina

    \[A_{EFGH}=\int_{\frac{1}{3}}^{\frac{2}{3}} \left(\sqrt{3}\left(x-\frac{1}{2}\right)^2+\frac{\sqrt{3}}{12}\right)dx=\frac{5}{54\sqrt{3}}.\]

Nyt siis kysytty todennäköisyys on

    \[\frac{A_{ABD}-A_{AGE}-A_{EFGH}-A_{BHF}}{A_{ABD}}=\frac{\frac{\sqrt{3}}{12}-\frac{\sqrt{3}}{54}-\frac{5}{54\sqrt{3}}-\frac{\sqrt{3}}{54}}{\frac{\sqrt{3}}{12}}=\frac{5}{27}.\]

Muokattu 31.3.2016: Lukijamme Kössi huomasi, että painopisteen y-koordinaatti oli kaksinkertainen oikeaan painopisteeseen verrattuna. Se on nyt korjattu oikeaksi, eli kolmion painopiste todella on \left(\frac{1}{2},\frac{\sqrt{3}}{6}\right). Lisäksi Kössi toivoi selvennystä siihen, miksi pisteet G ja H jakavat kannan AB suhteessa 1:1:1. Toivoakseni tämä muokattu ratkaisu vastaa nyt tuohonkin kysymykseen paremmin. Tarkempaa tehtävän analysointia ja vaihtoehtoisia ratkaisutapoja löytyy osoitteesta http://math.stackexchange.com/questions/1688936/what-is-the-probability-that-a-point-chosen-randomly-from-inside-an-equilateral.

0

Vedamatematiikkaa

Swāmī Bhāratī Kṛṣṇa Tīrtha (1884–1960) oli intialainen uskonoppinut ja matemaatikko, joka väitti kaiken matematiikan löytyvän muinaisista hindulaisista Veda-kirjoituksista johdetuista 16 suurasta ja 13 apusuurasta. Uskoo ken tahtoo (siis sen, mitä Swāmī Bhāratī Kṛṣṇa Tīrtha 1950-luvun lopulla kirjoittamassaan teoksessa väitti), mutta joka tapauksessa nämä yksinkertaiset säkeet antavat muutamia erittäin käyttökelpoisia – ja nopeita! – kikkoja päässälaskuun.

Keskitytään nyt toiseen suuraan, jonka nimi on Nikhilam Navatashcaramam Dashatah1. Se tarkoittaa suunnilleen, että ”kaikki yhdeksästä ja viimeinen kymmenestä”. Siinä kerrotaan kaksi lukuavedamatikka keskenään käyttäen apuna niiden etäisyyttä lähimmästä kymmenen potenssista. Kaksinumeroisilla luvuilla laskettaessa käytetään referenssilukuna sataa, kolminumeroisilla tuhatta ja niin edelleen. Otetaan esimerkiksi tulo 78\cdot 97. Kirjoitetaan luvut allekkain ja laitetaan niiden viereen toiseen sarakkeeseen niiden etäisyydet luvusta 100. Nyt tulon kaksi viimeistä numeroa saadaan kertomalla oikeanpuoleisen sarakkeen luvut keskenään: -22\cdot (-3)=66. Jos tässä tulossa olisi enemmän kuin kaksi numeroa, menisivät sadat muistinumeroiksi alkuosuuteen, eli esimerkiksi jos oltaisiin saatu 840, olisivat viimeiset kaksi numeroa 40 ja 8 lisättäisiin tulon alkuosuuteen. Vastaavasti jos tässä tulossa olisi vähemmän kuin kaksi numeroa, lisättäisiin nollia eteen.

Toisessa vaiheessa voidaan edetä neljällä eri tavalla, jotka kaikki tuottavat saman tuloksen. Voidaan laskea saman diagonaalin luvut yhteen. Tai voidaan laskea yhteen vasemmanpuoleisen sarakkeen luvut ja vähentää 100. Tai edelleen voidaan laskea oikeanpuoleisen sarakkeen luvut yhteen ja lisätä 100. Kuinka tahansa toimitaankaan, tulos on aina sama: 78-3=97-22=78+97-100=-22-3+100=75. Tulon kaksi ensimmäistä numeroa ovat siis 75. Ja kaikkiaan 78\cdot 97=7566, kuten kuka tahansa voi tarkistaa.

Viikon helppona tehtävänä on osoittaa, miksi tämä menetelmä toimii aina kaksinumeroisille luvuille.

Entäpä jos tehtävänä olisikin laskea vaikkapa 103\cdot 87? Tai 514\cdot 522? Viikon vaikea pulma on miettiä, miten tätä samaa tekniikkaa voisi soveltaa myös näihin tuloihin.

Tämä temppu parin sukulaisensa kanssa tuli vastaan Alex Bellosin (ainakin ensimmäisen puoliskonsa perusteella aivan loistavassa) kirjassa Alex’s Adventures in Numberland (Bloomsbury, 2010).