0

Kuninkaan yt-neuvottelut

Vierailimme vaimoni vanhassa kotitalossa, jossa tein huiman löydön: hänen vanhoista tavaroistaan löytyi kenenpä muunkaan kuin Lewis Carrollin The Complete Illustrated Lewis Carroll (Wordsworth Editions, 1996). Kirjaa selatessani törmäsin noin vuodelta 1870 peräisin olevaan Puzzles from Wonderland -tekstiin, jossa Carroll riimittelee hauskasti seitsemän pulmaa vastauksineen. Niistä viimeinen on tässä.1

Kuningas huomasi, että hänen rahansa olivat lähes lopussa, ja että hänen oli elettävä säästäväisemmin. Hän päätti irtisanoa suurimman osan neuvonantajistaan. Heitä oli satoja – hienoja vanhoja miehiä juhlavissa vihreissä samettiviitoissa, joissa oli kultaiset napit. Neuvonantajissahan ei varsinaisesti ollut muuta vikaa kuin että he puhuivat keskenään aivan ristiin, kun heidän neuvojaan kysyttiin; lisäksi he olivat järkyttävän kovia syömään ja juomaan. Kaikkiaan kuningas oli ihan tyytyväinen päästessään heistä eroon. Mutta valtakunnassa oli eräs ikivanha laki, jota kuningaskaan ei tohtinut rikkoa. Laki määräsi neuvonantajien määrästä seuraavaa:

”Seitsemän molemmista silmistä sokeaa:

Kaksi yhdestä silmästä sokeaa:

Neljä jotka näkevät molemmilla silmillä:

Yhdeksän jotka näkevät yhdellä silmällä.”

Mikä oli neuvonantajien vähimmäismäärä?

Kuva: Wikimedia Commons

Kuva: Wikimedia Commons


Ratkaisu: Neuvonantajia tarvitaan vähintään kuusitoista, sillä kokonaan sokea voidaan laskea toisesta silmästä sokeaksi ja kokonaan näkevä voidaan laskea toisella silmällä näkeväksi. Mutta annetaanpa Lewis Carrollin vastata ihan omin sanoin:

Five seeing, and seven blind
Give us twelve, in all, we find;
But all of these, ’tis very plain,
Come into account again.
For take notice, it may be true,
That those blind of one eye are blind for two;
And consider contrariwise,
That to see with your eye you may have your eyes;
So setting one against the other—
For mathematician no great bother—
And working the sum, you will understand
That sixteen wise men still trouble the land.

0

Hyvä ja huono pelaaja

Tehtävänäsi on pelata kolme erää squashia ja voittaa niistä kaksi peräkkäin. Vastaasi asettuu vuoron perään hyvä pelaaja ja kehno pelaaja. Kumpi vastustajista sinun kannattaa kohdata ensin? Eli kannattaako sinun pelata erät järjestyksessä hyvä–kehno–hyvä vai kehno–hyvä–kehno?

Kuva: jamesdaniel4792 / Flickr (CC BY-NC-ND 2.0)

Kuva: jamesdaniel4792 / Flickr (CC BY-NC-ND 2.0)


Ratkaisu: Parempi järjestys on hyvä–kehno–hyvä. Ratkaisua voidaan lähestyä ainakin kahdella tavalla. Ensinnäkin, koska tehtävänäsi on voittaa kaksi peräkkäistä erää, on sinun välttämättä voitettava eristä keskimmäinen. Sen voittotodennäköisyys kannattaa maksimoida, joten kehno pelaaja kannattaa kohdata nimenomaan silloin.

Ratkaisu voidaan toki osoittaa oikeaksi myös matemaattisesti. Olkoon todennäköisyys sille, että voitat hyvän pelaajan h, ja kehnon pelaajan voittamiselle k. Nyt tietenkin 0<h<k<1, eli hyvän pelaajan voittaminen on epätodennäköisempää kuin kehnon. Näillä merkinnöillä häviät hyvälle pelaajalle todennäköisyydellä 1-h ja kehnolle todennäköisyydellä 1-k. Oletetaan, että peräkkäisten erien voittotodennäköisyydet eivät riipu toisistaan.

Erilaisia tapoja voittaa kaksi erää peräkkäin on kolme:

  1. voitto, voitto, voitto
  2. voitto, voitto, tappio
  3. tappio, voitto, voitto

Nämä ovat erillisiä, riippumattomia tapauksia, joten yhden tapauksen todennäköisyys saadaan tulon avulla ja kokonaistodennäköisyys laskemalla yksittäisten todennäköisyyksien summa. Tutkitaan ensin järjestys hyvä–kehno–hyvä. Tästä saadaan todennäköisyys

    \[hkh+hk(1-h)+(1-h)kh=hk(2-h).\]

Vastaavasti järjestykselle kehno–hyvä–kehno saadaan todennäköisyys

    \[khk+kh(1-k)+(1-k)hk=hk(2-k).\]

Koska h<k, niin 2-h>2-k, joten hk(2-h)>hk(2-k).

Tämäkin ongelma tuli vastaan Alex Bellosin pulmapalstan kautta. Bellos kreditoi pulman lähteeksi Frederick Mostellerin kirjan Fifty Challenging Problems in Statistics with Solutions. Tämä pulmablogiharrastus alkaa käydä kukkarolleni, sillä Mostellerin kirjan lisäksi nettikirjakaupasta tarttui (taas kerran) mukaan muutama muukin alan teos. Niistä luultavasti tuonnempana lisää.

0

Turnauskaavio

Kiitos Alex Bellosin pulmapalstan The Guardianissa mieleeni palautui hauska pikku pulma liittyen urheiluturnauksiin. Koska Bellosin pulmassa pelattiin mielestäni hieman liian pienillä luvuilla, tuunaan pulmaa vähän enemmän omaan makuuni.

Suureen rantapalloturnaukseen osallistuu 2048 pelaajaa, ja vain voittamalla ottelun pääsee jatkoon. Kuinka monta ottelua turnauksessa on pelattava voittajan selvittämiseksi? Koeta ratkaista pulma turvautumatta yhteenlaskuun tai matemaattisiin kaavoihin!

Kuva: Dave Hosford / Flickr (CC BY 2.0)

 


Ratkaisu: Koska vain yksi pelaaja voittaa turnauksen, pitää 2047 pelaajan hävitä. Näin ollen otteluita tarvitaan 2047.

0

Kössin syntymäpäivät

Pulmakulman ylläpidossa alkaa pian hyvin ansaittu kesäloma. Loma on kiireettömyyden ja rentoutumisen aikaa, ja niinpä juhlistammekin sitä pulmalla, jonka ajattelin laittaa tänne jo viime keväänä, kun koko sivusto oli vasta pilkkeenä silmäkulmassani. Se kiersi laajasti ympäri nettiä viime vuonna, mutta älkää nyt ihan vielä sieltä vastausta etsikö – ei se niin vaikea ole! Pulma oli Singapore and Asian Schools Maths Olympiad -kilpailun tehtävänä noin 15-vuotiaille koululaisille.

Kössillä on synttärit tulossa ja juhlat pitäisi järjestää, mutta Mikko ja Toni eivät valitettavasti tiedä, koska ne ovat. Pulmakulmaa pitkään seuranneella Kössillä on kuitenkin ketunhäntä kainalossaan. Hän paljastaa, että syntymäpäivä on jokin seuraavista:

  • 15., 16. tai 19. toukokuuta
  • 17. tai 18. kesäkuuta
  • 14. tai 16. heinäkuuta
  • 14., 15. tai 17. elokuuta

Sitten Kössi kuiskaa Mikolle oikean kuukauden ja Tonille oikean päivän. Loistavat loogikot Mikko ja Toni käyvät seuraavan keskustelun:

Mikko: ”En tiedä vastausta, mutta tiedän, ettei Tonikaan tiedä.”

Toni:  ”Ihan aluksi en minäkään tiennyt, mutta nytpä tiedän!”

Mikko: ”Ha! No niin tiedän minäkin!”

Milloin Kössin syntymäpäivä on?


Ratkaisu: Mikko voi oikean kuukauden kuultuaan poissulkea toukokuun ja kesäkuun, sillä 19. päivä on mahdollisuutena vain toukokuussa ja 18. päivä kesäkuussa. Jos Kössin syntymäpäivä olisi ollut jompi kumpi näistä, olisi Toni tiennyt sen heti ilman lisätietoa kuukaudesta.

Nyt Toni sai kuitenkin oivallista lisäinformaatiota siitä, mikä kuukausista on oikein. Ja koska sekä heinäkuussa että elokuussa on mahdollisena päivänä 14. päivä, ei se voi olla ratkaisu, jos Toni kerran tällä yhdellä lisävihjeellä ratkaisun selvitti. Jäljellä olevat vaihtoehdot ovat siis 15., 16. tai 17. päivä – kuukaudella ei Tonille ole enää merkitystä.

Mikko tietää oikean kuukauden, muttei päivää. Koska elokuulle jää kaksi vaihtoehtoa, mutta heinäkuulle enää yksi, on oikea syntymäpäivä välttämättä 16. heinäkuuta.

0

Pennirinki

Seuraava pulma on Charles Lutwidge Dodgsonin alias Lewis Carrollin kirjasta Pillow-Problems vuodelta 1895. Kirjassa on 72 ongelmaa, jotka Dodgson kertoo kehitelleensä ja ratkoneensa päässänsä unettomina öinä. Kirjan ongelmien vaikeustaso vaihtelee hurjasta helpohkoihin, ehkäpä yläpäätä painottaen. Tämä ongelma on sieltä kevyemmästä päästä.

Viisi roistoa istuu ringissä ja jokaisella miehellä on yhtä monta penniä. Älykkäin heistä ehdottaa pientä pennipeliä. Ensinnäkin kaikki saavat numeron, älykkäin ykkösen, seuraava kakkosen, sitten kolmonen, nelonen ja vielä vitonen. Nyt älykkäin laittaa kaikki penninsä pussiin, antaa sen kolmoselle, jonka pitää ensin ottaa kummallekin naapurilleen pussista naapurin numeron osoittama määrä pennejä. Sitten kolmosen pitää laittaa pussiin puolet siitä määrästä pennejä, joka pussissa oli sen saapuessa hänelle. Sitten kolmonen antaa pussin vitoselle, joka antaa myös pussista pennit vierustovereille, lisää puolet siitä summasta, joka pussissa oli sen tullessa hänelle, ja antaa pussin kaksi paikkaa eteenpäin. Jos sattuisi käymään niin, että rahanlisäysvaiheessa itsellä ei olisi tarpeeksi rahaa pussin täydentämiseen, saisi kenen tahansa muun paitsi numero ykkösen pennipinosta täydentää puuttuvan määrän.

Kun pussi tulee takaisin ykköselle, hän nakkaa kaksi saamaansa rahaa pussiin, vetää pussin nyörit kiinni ja pakenee vauhdilla paikalta. Muut neljä roistoa jäävät hölmistyineinä katsomaan tyhjin käsin – ryökäle nappasi kaikki rahat! Kuinka monta penniä kullakin roistolla oli aluksi?


Ratkaisu: Olkoon kullakin konnalla aluksi k kolikkoa. Peli etenee seuraavasti:

  1. Numero 3 sai pussin jossa on k kolikkoa ja hän antoi pois 2+4=6 kolikkoa. Sitten hän laittaa pussiin \frac{k}{2} kolikkoa, joten pussiin jää k+\frac{k}{2}-6=\frac{3}{2}k-6 kolikkoa.
  2. Numero 5 jakaa pois 4+1=5 kolikkoa ja puolitoistakertaistaa pussissa olleen rahasumman. Loppusumma hänen vuoronsa jälkeen on siis \frac{3}{2}\left(\frac{3}{2}k-6\right)-5.
  3. Numero 2 jakaa pois 1+3=4 kolikkoa ja puolitoistakertaistaa pussin summan. Pussin rahamäärä on hänen jälkeensä \frac{3}{2}\left(\frac{3}{2}\left(\frac{3}{2}k-6\right)-5\right)-4.
  4. Numero 4 jakaa pois 3+5=8 kolikkoa ja puolitoistakertaistaa pussin summan. Pussin rahamäärä on hänen jälkeensä \frac{3}{2}\left(\frac{3}{2}\left(\frac{3}{2}\left(\frac{3}{2}k-6\right)-5\right)-4\right)-8.
  5. Numero 1 lisää pussiin kaksi kolikkoa, jonka jälkeen pussissa on 5k kolikkoa.

Tästä saadaan yhtälö 

    \[\frac{3}{2}\left(\frac{3}{2}\left(\frac{3}{2}\left(\frac{3}{2}k-6\right)-5\right)-4\right)-8+2=5k,\]

jonka ratkaisu on k=696.

Sivumennen sanoen: olisi ehkä jäänyt ratkaisematta ilman kynän ja paperin apua. Eli onnea vain Lewis Carrollille, jos päässään yöllä tämän pyöritteli loppuun asti.

2

Pikainen summa

Tehdäänpä välillä pieni päässälaskutemppu. Valitse mitkä tahansa kaksi lukua ja laske ne yhteen. Jatka Fibonaccin jonon tyylisesti niin, että seuraavan luvun saat laskemalla kaksi edellistä lukua yhteen. Jatka, kunnes sinulla on kaikkiaan kymmenen lukua. Näiden kymmenen luvun summa on 11 kertaa neljänneksi viimeinen luku.

Siis esimerkiksi

    \[3+4+7+11+18+29+47+76+123+199=11\cdot 47=517.\]

Helppoa, eikö? Osoita, että homma toimii aina.


Ratkaisu: Ystäväni Maija ratkaisi ongelman seuraavasti. Merkitään kahta ensimmäistä lukua a ja b. Nyt a + b + (a+b) + (a+2b) + (2a+3b) + (3a + 5b) + (5a+8b) + (8a+13b) + (13a+21b) + (21a+34b) = 55a + 88b = 11\cdot (5a+8b).

Ratkaisu muuten mahtui kokonaisuudessaan yhteen twiittiin.

0

Kaiken juuri

Paljonko on

    \[\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\cdots \frac{1}{\sqrt{24}+\sqrt{25}}?\]


Ratkaisu: Koska laventamalla saadaan

    \[\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}=\frac{\sqrt{2}-\sqrt{1}}{2-1}=\sqrt{2}-1,\]

ja edelleen

    \[\frac{1}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\frac{\sqrt{3}-\sqrt{2}}{3-2}=\sqrt{3}-\sqrt{2},\]

ja koska vastaava lavennus toimii kaikille summan tekijöille, niin

    \[\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\cdots +\sqrt{25}-\sqrt{24}=5-1=4.\]

Tämä ongelma löytyi Matthew Scroggsin pulmakokoelmasta.

3

Valkeita palloja pussissa

Pussissa on joko musta tai valkoinen pallo. Laitetaan pussiin valkoinen pallo ja nostetaan tämän jälkeen sattumanvaraisesti toinen palloista pois. Millä todennäköisyydellä pussiin jää valkoinen pallo, jos nostettu pallo oli valkoinen?

Tämä hauska ongelman lienee keksinyt brittimatemaatikko Charles Lutwidge Dodgson (1832–1898). Jälkimaailma tuntee hänet paremmin kirjailijanimellä Lewis Carroll.


Ratkaisu: Seuraavat nostojärjestykset ovat ainoat mahdolliset:

  1. Valkoinen pallo 1 ja valkoinen pallo 2.
  2. Valkoinen pallo 2 ja valkoinen pallo 1.
  3. Valkoinen pallo 1 ja musta pallo 1.

Tapauksilla 1–3 on sama todennäköisyys, joten kysytty todennäköisyys on \frac{2}{3}.

 

2

Kielletty katse

Anneli katselee Börjeä, mutta Börje katselee Christinaa. Anneli on naimaton, mutta Christina on – varjelkoon! –  naimisissa. Onko skandaali valmis? Katseleeko naimaton naimisissa olevaa?

Kuva: Gordon Ross / Flickr (CC BY-NC-ND 2.0)

Kuva: Gordon Ross / Flickr (CC BY-NC-ND 2.0)


Ratkaisu: Börjen parisuhdestatusta emme tunne, mutta skandaali tästä toden totta seuraa, sillä riippumatta Börjen siviilisäädystä naimaton katselee naimisissa olevaa. jos Börje on naimisissa, katsoja on Anneli, ja jos Börje ei ole naimisissa, hän itse katselee naimisissa olevaa Christinaa.

Vaikka loogisena ongelmana tämä ei ollutkaan kovin hankala, oikeastaan kompatehtävä, on sen ratkaisuperiaatteella muitakin sovellusalueita. Ongelma tuli vastaan mainion James Grimen esittämänä, ja erityisesti tässä videossa oleva lisäongelma valaisee periaatteen käyttömahdollisuuksia.

0

Kuulat purkissa

Purkissa on 75 valkoista kuulaa ja 150 mustaa kuulaa. Purkin vieressä on kasa mustia kuulia. Vähän tylsistynyt opettaja H. ottaa kuulia purkista seuraavilla säännöillä: hän nostaa silmät kiinni kaksi kuulaa ja katsoo, minkä värisiä ne ovat. Jos hän nostaa kaksi valkoista kuulaa, hän heittää ne pois ja laittaa purkkiin yhden mustan kuulan viereisestä kasasta. Jos taas hän nostaa ainakin yhden mustan kuulan, laittaa hän sen viereiseen kasaan ja palauttaa toisen kuulan takaisin purkkiin sen väristä riippumatta. Jokaisen nostokierroksen jälkeen purkissa on yksi kuula vähemmän kuin aiemmin. Lopulta purkkiin jää vain yksi kuula. Minkä värinen se on?

Kuva: Lenny Hirsch / Flickr (CC BY-NC-ND 2.0)

Kuva: Lenny Hirsch / Flickr (CC BY-NC-ND 2.0)


 

Ratkaisu: Purkin viimeinen kuula on valkoinen, sillä valkoiset kuulat poistuvat purkista vain pareittain.