0

Kaarien rajaama ala

Sain viimein käsiini Thomas Poveyn pulmakirjan nimeltä Professor Povey’s Perplexing Problems (Oneworld Publications, 2015). Jo nopealla ensi silmäilyllä ja todella pintapuolisella selailulla kävi selväksi, että nyt on käsissä helmi. Poveyn mukaan kirjan ongelmat eivät vaadi mitään lukiotason matematiikkaa kummempia menetelmiä, mutta luovaa kykyä ongelmanratkaisuun kyllä kaivataan. Tässä yksi maistiainen kirjan sisällöstä. Näyttää ihan helpolta, mutta –

Neliön sivun pituus on 2a. Sen vastakkaisista kärjistä piirretään ympyränkaaret, joiden säteet ovat a ja 2a. Mikä on kaarien rajaaman alueen pinta-ala?Näyttökuva 2015-10-9 kello 18.39.21

 

 

2

Laskut sekaisin

Kiireinen yrittäjä lähettää kuudelle asiakkaalleen laskun ja sulkee ne kirjekuoriin. Äkkiä hän huomaa, että osoitetarrat unohtuivat kuorien päältä. Millä todennäköisyydellä hän saa sattumanvaraisesti lätkimistään tarroista täsmälleen viisi oikeisiin kuoriin?

Kirjuri Ezra (n. 700-l.) Kuvalähde: Wikimedia Commons/Public domain

Kirjuri Ezra (n. 700-l.) Kuvalähde: Wikimedia Commons/Public domain


Ratkaisu: Todennäköisyys on nolla. Jos viisi osoitetta menee oikein, myös kuudes menee.

0

Omenapora

Pitkän matematiikan syksyn 2015 ylioppilaskokeessa tehtävänä 7 kysyttiin seuraavaa:

Täysin pyöreän geenimanipuloidun omenan säde on 5,0 cm. Omenan läpi porataan sen keskeltä kulkeva reikä, jonka säde on 1,0 cm. Kuinka monta prosenttia omenan tilavuudesta tällöin häviää? Anna vastaus prosenttiyksikön kymmenesosan tarkkuudella.

Tehtävä on ihan hauska ja hyvä, mutta vielä hauskempi on tehtävän ilkeä äitipuoli. Jos olisin Martin Gardner, olisin kysynyt abiturienteilta näin:

Pallon muotoisen omenan läpi porataan kuusi senttimetriä pitkä reikä, joka kulkee pallon keskipisteen kautta. Kuinka suuri on jäljelle jäävän omenan tilavuus?

Kuva: Alan Levine/Flickr (CC BY 2.0)

Kuva: Alan Levine/Flickr (CC BY 2.0)


Ratkaisu:

Lieriö pallossaPallo ja lieriö – poikkileikkaus

Omenapora leikkaa omenasta kappaleen, joka muodostuu suorasta ympyrälieriöstä, jonka korkeus on mainittu 6 cm, sekä kahdesta pallosegmentistä. Olkoon omenan säde R, lieriön säde r ja pallosegmentin korkeus h. Lieriö sijaitsee symmetrisesti omenan keskipisteen ylä- ja alapuolella, joten voimme piirtää oheisen poikkileikkauksen mukaisen kuvan. Nyt Pythagoraan lauseen nojalla R^2=3^2+r^2, eli r^2=R^2-3^2. Edelleen havaitaan, että pallosegmentin korkeus on h=R-3. Näistä huomioista saadaankin jo laskettua sekä lieriön että pallosegmentin tilavuudet:

    \[\begin{array}{rcl} V_l & = &\pi r^2\cdot 6=\pi(R^2-3^2)\cdot 6\\ & = & 6\pi R^2-54\pi;\\ V_{ps} & = & \pi h^2\left(R-\frac{h}{3}\right)\\ &=&\pi (R-3)^2\left(R-\frac{R-3}{3}\right)\\ & =&\frac{2}{3}\pi R^3-6\pi R^2+18\pi. \end{array}\]

Tämän jälkeen loppu on pelkkää sievennystä:

    \[\begin{array}{rcl} V_{omena} & =&V_{pallo}-V_l-2V_{ps}\\ &=&\frac{4}{3}\pi R^3-\left(6\pi R^2-54\pi\right)-2\left(\frac{2}{3}\pi R^3-6\pi R^2+18\pi\right)\\ &=&36\pi. \end{array}\]

Vastaus on siis – ehkä hieman yllättäen – omenan säteestä riippumaton vakio.

Jälkikirjoitus: Annoin tämän ongelman viime keväänä pohdittavaksi parille opiskelijalleni. Eräs heistä esitti ongelmaan sangen ketterän ratkaisun. Hän totesi, että pienentämällä reiän sädettä kohti nollaa on päädyttävä samaan ratkaisuun kuin missä muussa tapauksessa tahansa. Reiän ja pallosegmenttien hävitessä raja-arvona on pallo, jonka halkaisija on 6. Siispä jäljelle jäävä tilavuus on sama kuin 3-säteisen pallon, eli \displaystyle\frac{4}{3}\pi\cdot 3^3=36\pi. Ratkaisu on sinänsä ovela oikotie, mutta se perustuu ehkä vähän kyseenalaiseen lisäoletukseen: voimmeko tehtävänannon perusteella luotettavasti päätellä, että kyseessä on ongelma, johon on olemassa yksikäsitteinen ratkaisu?

0

Kolikonheittoa shakkilaudalla

Pyöreä kolikko pudotetaan sattumanvaraisesti suurelle shakkilaudalle. Shakkilaudan ruudun sivu on kaksinkertainen kolikon halkaisijaan verrattuna. Millä todennäköisyydellä kolikko putoaa sekä mustan että valkean ruudun päälle?

Tämä hauska pikku pulma tuli vastaan Alex Bellosin The Guardianissa pitämää pulmapalstaa selatessani. Hän puolestaan sanoi löytäneensä ongelman kirjasta, jolla on hieno nimi: Professor Povey’s Perplexing Problems. Tämä Thomas Poveyn kirja lähtikin heti tilaukseen. Pitäkää siis varanne jatkossakin, rakkaat pulmakulman lukijat!


Ratkaisu: 

Tarkastellaan shakkilautaa, jonka ruudun sivun pituus on 2a. Tällöin kolikon halkaisija on a, ja kolikkoja mahtuu kerralla yhden ruudun sisälle neljä. Tässä asetelmassa kolikkojen keskipisteet muodostavat neliön, jonka sivun pituus on aimage

Jos nyt pudotamme kolikon shakkiruudulle, ei se ulotu toisen ruudun puolelle, mikäli sen keskipiste jää tummennetun neliön sisälle. Tämän tummennetun neliön ala on \frac{1}{4} koko ruudun alasta, joten vastaus kysymykseen on tietenkin \frac{3}{4}.

7

Pyöreän pöydän ritarit – ratkaisu

Suuren salin pyöreän pöydän ympärillä oli 24 tasaisin välimatkoin aseteltua nimettyä paikkaa. Kun pyöreän pöydän ritarit saapuivat saliin, oli valitettavasti pimeää, ja kaikki ritarit istuivat vahingossa väärille paikoille. Osoita, että pöytää kiertämällä saadaan ainakin kahden ritarin nimilaput oikeille paikoille.

Tässä ongelmassa vaikuttaa yksinkertaisuudestaan huolimatta sangen vahva matemaattinen periaate, jota kutsutaan kyyhkyslakkaperiaatteeksi. Toisinaan sitä kutsutaan myös kehittäjänsä Johann Peter Gustav Lejeune Dirichlet’n (1805–1859) mukaan, mutta pitäytykäämme tässä hieman hauskemmassa – ja silti yleisesti tunnetussa – nimityksessä. Kyyhkyslakkaperiaatteessa on kyse siitä, että jos m asiaa pitää laittaa n laatikkoon ja m>n, niin ainakin yhteen laatikkoon tulee ainakin kaksi asiaa.

Kuinka pyöreän pöydän ritarit sitten liittyvät kyyhkyslakkaperiaatteeseen? Yleisyydestä luopumatta voidaan sopia, että pöytää kierretään esimerkiksi vastapäivään. Nyt kukaan ritareista ei ole omalla paikallaan, joten jokainen on korkeintaan 23 paikan päässä omasta nimilapustaan. Koska ritareita on 24, on vähintään kahden ritarin oltava (jollakin) samalla etäisyydellä d omasta paikastaan. Siis jos pöytää kierretään d askelta, nämä vähintään kaksi ritaria saadaan omille paikoilleen.

24 ei ole tässä mikään taikaluku, sillä kyyhkyslakkaperiaate kyllä soveltuu muihinkin vastaavankaltaisiin tilanteisiin. 24 on vain valittu siksi, ettei kaikkien järjestysvaihtoehtojen läpikäynti yksi kerrallaan olisi ihan liian helppoa, mutta toisaalta ei liian vaikeaakaan.

Kysyin alkuperäisen jutun kommenttiosiossa, onnistuuko kierto enää välttämättä, jos yksi ritari olisikin istunut oikealle paikalle. Näkemykseni mukaan tässä tapauksessa ainakaan kyyhkyslakkaperiaatetta ei voida soveltaa, sillä väärille paikoille istuneet 23 ritaria ovat nyt 1–23 paikan päässä oikealta paikaltaan. Luultavasti on mahdollista konstruoida tilanne, jossa kiertämällä ei saada kuin yksi ritari kerrallaan paikalleen. En tosin ole nyt ihan varma. Todistakaapa tämä joko todeksi tai epätodeksi.

Muokattu 29.9.2015 – Neuvokas lukijamme Antti S. esittää alla mainion todistuksen sille, että homma onnistuu, vaikka yksi ritareista istuisikin aluksi epähuomiossa omalle paikalleen.

4

Pyöreän pöydän ritarit

Suuren salin pyöreän pöydän ympärillä oli 24 tasaisin välimatkoin aseteltua nimettyä paikkaa. Kun pyöreän pöydän ritarit saapuivat saliin, oli valitettavasti pimeää, ja kaikki ritarit istuivat vahingossa väärille paikoille. Osoita, että pöytää kiertämällä saadaan ainakin kahden ritarin nimilaput oikeille paikoille.

Tämä ongelma löytyi Matthew Scroggsin pulmasivuilta. Hän itse kreditoi ongelman kenellepä muullekaan kuin Martin Gardnerille. Pulman ratkaisu löytyy täältä.

Evrard d’Espinques (noin v. 1470): Kuningas Arthur ja pyöreän pöydän ritarit (Kuvalähde: Wikimedia Commons/Public Domain)

2

Tornikellon lyönnit

Tornikello lyö 12 kertaa 30 sekunnissa. Missä ajassa kello lyö kuusi kertaa?

Kuva: Mikko Paananen/Wikipedia


Ratkaisu: 

Tornikello lyö ensimmäisen kerran ajanhetkellä 0 sekuntia ja kahdennentoista kerran ajanhetkellä 30 sekuntia. Näiden hetkien väliin jää 11 lyönninväliä, joista viidennen jälkeen kello lyö kuudennen kerran. Näin ollen kello lyö kuusi kertaa \frac{5}{11}\cdot 30=\frac{150}{11}\approx 13,6 sekunnissa.

Tähän kirjoitan nyt vielä julkisen anteeksipyynnön lukion pitkän matematiikan ykköskurssilaisilleni, jotka täysin yksimielisesti vastasivat tähän kysymykseen väärin kurssikokeessaan viime viikolla. Tiesin hieman jekuttavani teitä. Anteeksi.

1

Viiniä kuninkaan juhliin – ratkaisu

Kuninkaalla oli suuret syntymäpäiväjuhlat tulossa. Hän oli varannut juhlia varten 1000 tynnyrillistä viiniä kellariinsa. Mutta viikkoa ennen juhlia alkoi hovissa levitä huhu, että yksi tynnyreistä olisi myrkytetty. – – Kuningas päättää testata viinikellarinsa ministereillään. Mikä on vähin määrä ministereitä, joka kuninkaan on uhrattava, jotta hän varmasti saisi selville, mikä tynnyreistä on myrkytetty?

Kuten aiemmassa ongelmassa mainittiin, on binääriluvuilla lukuisia sovelluksia. Myös tämä ongelma ratkeaa lukujen muuttamisella binäärijärjestelmään. Kertauksen vuoksi: luvun binääriesityksellä tarkoitetaan luvun esittämistä kakkosen potenssien avulla. Näin siis esimerkiksi 13=1\cdot 2^3+1\cdot 2^2+0\cdot 2^1+1\cdot 2^0=1101_2. Koska 2^9=512 ja 2^{10}=1024, ongelma voidaan ratkaista vähimmillään kymmenen ministerin avustuksella.

Liitetään jokaiseen tynnyriin yksilöllinen 10-bittinen binääriluku; lisätään tarvittaessa luvun eteen nollia. Esimerkiksi 6. tynnyri olisi 0000000110 ja 789. tynnyri 1100010101. Tämän jälkeen järjestetään ministerit järjestykseen ensimmäisestä kymmenenteen. Tynnyrin binääriluvun bitti (1 tai 0) kertoo, pitääkö kunkin ministerin maistaa tynnyristä vai ei. Tässä esimerkiksi ensimmäinen ja toinen ministeri eivät maistaisi 6. tynnyristä, mutta maistaisivat 789. tynnyristä. Kolmannen ministerin ei tarvitsisi maistaa kummastakaan, kun taas esimerkiksi tynnyristä numero 245 (eli binäärisenä 0011110101) hän maistaisi, kuten myös neljäs, viides, kuudes, kahdeksas ja kymmenes ministeri.

4

Missä isä on?

Lapsi on 21 vuotta äitiään nuorempi. Tasan kuuden vuoden kuluttua äidin ikä on täsmälleen viisinkertainen lapsen ikään verrattuna. Missä lapsen isä on?

Tämä hauska ongelma löytyi uusiseelantilaiselta FOLJ.com-pulmasivustolta, jonne viime viikon vaikean punnitusongelman vinkannut Johannes Jermakka minut johdatti.


Ratkaisu:

Olkoon lapsen ikä nyt x vuotta. Tällöin äidin ikä kuuden vuoden kuluttua on 27+x, ja koska se on viisinkertainen lapsen ikään verrattuna, saadaan yhtälö

    \[27+x=5(x+6),\]

jonka ratkaisu on x=-\frac{3}{4} vuotta eli -9 kuukautta. Näin ollen lapsen isä lienee juuri siellä, missä lapsen äitikin on.

 

0

Viiniä kuninkaan juhliin

Kuninkaalla oli suuret syntymäpäiväjuhlat tulossa. Hän oli varannut juhlia varten 1000 tynnyrillistä viiniä kellariinsa. Mutta viikkoa ennen juhlia alkoi hovissa levitä huhu, että yksi tynnyreistä olisi myrkytetty. Myrkky oli niin voimakasta, että pisarakin viiniä saastuneesta tynnyristä riittäisi kasvattamaan viisimetriset sierainkarvat kaikille tynnyristä siemailleille. Pahinta oli, että vaikka myrkyn vaikutus sitä juoneelle oli sataprosenttisen varma, myrkytyksen itämisaika oli jotain yhdestä vuorokaudesta kuuteen vuorokautta, eikä ennen sierainkarvojen äkillistä kasvua voinut mitenkään päätellä, oliko nauttinut myrkytettyä viiniä vai ei. Kuningas päättää testata viinikellarinsa ministereillään. Mikä on vähin määrä ministereitä, joka kuninkaan on uhrattava, jotta hän varmasti saisi selville, mikä tynnyreistä on myrkytetty?

Kuvaskannaus: JPS68/Wikimedia Commons (Public domain)

Ongelman ratkaisu löytyy täältä.