Neliöiden naapurit

 

Nyt on vuorossa perusgeometriaa! Oheisessa kuvassa ABCD ja AEFG ovat neliöitä. Osoita, että kolmioilla AGB ja ADE on sama pinta-ala.

Tämä pulma on Daniel Grillerin kirjasta Elastic Numbers. Löysin siihen helpon, mutta melko tylsän ratkaisun, joka on perusteltavissa lukiogeometrialla. Grillerin oma ratkaisu puolestaan on oleellisesti yksinkertaisempi ja kauniimpi. Sen ymmärtää alakoululainenkin! Siksipä tässä on sangen nätti viikon helppo pulma.


Kuva 1: Suplementtikulmat

Ratkaisu: Oma ideani perustui siihen, että koska kulmat BAD ja EAG ovat suoria, ovat kulmat \alpha ja \beta ovat suplementtikulmia, eli ne muodostavat yhdessä 180^{\circ} kulman (kuva 1). Lukiotrigonometriassa opimme rakkaan työkalumme yksikköympyrän avulla, että kulmalla ja sen suplementtikulmalla on sama sini. Ja koska kolmion ABG ala voidaan laskea kaavalla \displaystyle\frac{1}{2}ab\sin \alpha, missä a ja b ovat kulman \alpha kyljet, ja yhtä lailla kolmion ADE ala on \displaystyle\frac{1}{2}ab\sin \beta, niin selvästi kolmioiden alat ovat samat.

Joo, ei hirveän tyylikäs ratkaisu, mutta ratkaisu kuitenkin, ja itse tuloshan on varsin mukava.

Kuva 2: Kierto pisteen A ympäri

Daniel Griller lähtee myös samasta ajatuksesta: \alpha+\beta=180^{\circ}. Mutta hän vie idean nokkelasti pidemmälle (Kuva 2). Koska AB=AD=a, voidaan kolmio AGB kiertää 90 astetta pisteen A ympäri kolmioksi AHD, jossa AH=AG=b ja \gamma=\alpha (ja siis samalla \gamma+\beta=180^{\circ}, joten pisteet A, E ja H ovat samalla suoralla). Nyt meillä on kaksi kolmiota, AHD ja AED, joilla on sama kanta b ja sama korkeus, mistä ratkaisu välittömästi seuraa.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *

This site uses Akismet to reduce spam. Learn how your comment data is processed.